fibre crops in a cascade biorefinery concept - fibrafp7.netfibrafp7.net/portals/0/02_zatta.pdf ·...

Post on 06-Mar-2018

213 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Fibre crops in a cascade pbiorefinery concepty p

Alessandro Zatta, 27th July 2013

Multi-purpose cropsp p p(e.g. hemp, kenaf, flax, nettle)

• FoodSeeds

• Cosmetic 

• Antimicrobial and pharmaceuticalFlower

• Antimicrobial and pharmaceutical

• Bio‐buildingStem

Leaf

• Textile

Stem

• Automotive

• Energy

The members of IEA Bioenergy Task 42 have agreed on the following definition for biorefinery:“ f h bl f b f“Biorefinery is the sustainable processing of biomass into a spectrum of marketable products (food, feed, materials, chemicals) and energy (fuels, power, heat)”

fiber crops thanks to their capacity to supply feedstock for a large typology and quantity offiber crops, thanks to their capacity to supply feedstock for a large typology and quantity of products (biopolymers, biochemical, energy, etc.), can be considered as a main player

A bi fi i h t i d b f i tA bio‐refinery is characterized by four main components: 

1) Platform1) Platform

2) Process

3) Products

4) Feedstock

Technological processesTechnological processes to convert feedstock

1. Mechanical / physical → reduc on or separa on of feedstock 

components (e.g. pressing, milling, separation, etc.). The 

chemical structure doesn’t change

2. Biochemical → Using microorganisms or enzymes with low 

temp. and pressure (anaerobic digestion, fermentation, 

ti i )enzymatic conversion)

3. Chemical → The chemical structure change (e.g. hydrolysis, 

trans‐esterification, hydrogenation, oxidation, pulping)

4. Thermochemical → The feedstock is subjected to extreme 

conditions: high temp and/or pressure with/without catalyst 

(pyrolysis, gasification, Steam explosion, hydrothermal 

di t i b ti )upgrading, extrusion, combustion)

Multiple end‐use potentialsp p

Products:

• Fiber‐based (yarn panels pulp and paper plywood )Fiber based (yarn, panels, pulp and paper, plywood, ...)

• Bio‐Composite (fiber‐polypropylene, fiber‐polyester resins, …)

• Chemical (lignin, furfural, resin, cellulose esters, bio‐polymers, …)

• Energy (bio‐ethanol,  Syngas, ...)

• Cosmetic and pharmaceutical (personal care essential oilsCosmetic and pharmaceutical (personal care, essential oils, 

THC, …)

Biorefinery concept of bast fiber cropsh d‐ Schematic diagram ‐

Platform textile technical energy

dew retting

Process

dew retting

decortication milling

degumming pulping Injection molding compression anaerobic

digestion

Product yarn

bedding

biopolymers PlywoodPaper pulp biofuels

Market

bedding

pepertextile automotive aeronautic bio-building energy

Main feedstock characteristicsMain feedstock characteristics

1. Moisture  and ash content (%)

2. Chemical composition (cellulose, hemi‐cellulose, lignin)

3. Fiber content (%)

4. Fiber properties (fineness, length, cristallinity, tensile strenght, 

colour)

5 E t t (GJ t‐1)5. Energy content (GJ t‐1)

Fibre properties for differentFibre properties for different technical applications

Bio‐based markets worldwide

(GrÖngrÖft and Müller‐Langer 2009)(GrÖngrÖft and Müller‐Langer, 2009)

Development approaches

TOP DOWN ANALYSIS

Development approaches

TOP – DOWN ANALYSIS

New and innovative process with low environmental impact

Novel applications for new markets

Existing bio refinery production chainExisting bio‐refinery production chainof fibre crops

BOTTOM – UP ANALYSIS

BOTTOM – UP ANALYSIS ‐ Existing bio‐refinery production chain of fibre crops ‐

1st step:Core and fiber separationtrough scutching linetrough scutching line

d

3rd step:fiber processing

Big fiber bundles

2nd step:fiber refining • Paper grade fiber

• Insulation grade fiber

fiber processing

FibersCoreBig fiber bundles

small fiber bundles

Insulation grade fiber

• Technical grade fiber 

(automotive quality)2nd step:

Cleaning and de dusting

• Textile grade fiberde‐dusting

Bedding

1st step:Core and fiber separationtrough flax scutching linetrough flax scutching line

Animal baddingCore

Long fiber Short fiber De‐dusting

Technical paper 

Long fiber Short fiber

hackling and spinningCombing

Yarn for textile industries

(banknote paper, cigarette paper) 

automotive, building, injection molding, fibre 

reinforced plastic

hackling and spinning

Yarn for textile industries reinforced plastic

BOTTOM – UP ANALYSISBOTTOM – UP ANALYSIS 

‐More relevant potentialities ‐

• Bio‐composite (substitution of fibers of glass, aramid and carbon)

• Textile (bio‐degumming)

• Cosmetics and pharmaceutical

• Energy

TOP – DOWN ANALYSISTOP  DOWN ANALYSIS 

‐ Novel application for new markets ‐

Directive 2009/30/ECDirective 2009/30/EC

• The combustion of road transport fuel is responsible for around 20 % of Community 

greenhouse gas emissions.

• Suppliers should by 31 December 2020 gradually reduce life cycle greenhouse gas• Suppliers should, by 31 December 2020, gradually reduce life cycle greenhouse gas 

emissions by up to 10 % per unit of energy from fuel and energy supplied. 

• This reduction  should amount to at least 6 % by 31 December 2020, compared to the 

EU‐average level of life cycle greenhouse gas emissions per unit of energy from fossilEU average level of life cycle greenhouse  gas emissions per unit of energy from fossil 

fuels in 2010, obtained through the use of biofuels, alternative fuels and reductions in 

flaring and venting at production sites.

R t i lRaw materials (e.g. hemp, flax, kenaf, nettle, etc.,)

Pretreatment

C5 sugars Hydrolysis Lignin

C6 sugars Gasification

Fermentation

Syngas

Bioethanol Animal feed

FT‐ synthesis

Synthetic biofuelsBioethanol Animal feed Synthetic biofuels (FT)(Modified from Jungmeier et al., 2009) 

Ethanol yield from cellulose*Ethanol yield from cellulose

* Badger, P.C. 2002. ASHS Press, Alexandria, VA.

3500

4000 (a)Cellulose

2500

3000

3500

(b)(b)(b)Glucose

0.76 Cell. conv. & recov. efficiency

1500

2000

2500

(L/h

a)

(b)( )(b)(b)

0.51 Ethanol stoichiometric yield

500

1000

1500

Ethanol (g)

0.75 Glucose fermentation

0

500

Alamo Everglades41 Fibranova Futura Tainung 2

Ethanol (g)

1.15 From g to L

Ethanol (L)

Ethanol yield from hemicellulose*Ethanol yield from hemicellulose

* Badger, P.C. 2002. ASHS Press, Alexandria, VA.

1400

1600

(a)HemicelluloseHemicellulose

g , , ,

1000

1200

1400

XyloseXylose

0.90 Cell. conv. & recov. efficiencyCell. conv. & recov. efficiency

600

800

(L/h

a)

(b) (b) (b)(b)0.510.51 Ethanol stoichiometric yieldEthanol stoichiometric yield

0

200

400

Ethanol (g)Ethanol (g)

0.500.50 Glucose fermentationGlucose fermentation

0Alamo Everglades41 Fibranova Futura Tainung 2

Ethanol (g)Ethanol (g)

1.151.15 From g to LFrom g to L

Ethanol (L)Ethanol (L)

Ethanol yield (L/ha)Ethanol yield (L/ha)

4500

5000 cellulose hemicellulose total

ab

a

3500

4000

4500

Ethanol fromcellulose was 80% in 

b bb b

ccc

2500

3000annual crops and 63% in switchgrass

a1500

2000

b b b b

0

500

1000

0Alamo Fibranova Futura75 Tainung2 Everglades41

Textile destination

+(113/120 GJ ha-1)

Fibres yield after industrial processingPotential ethanol yield (Sheenhan et al. 2004)

2,03,0Short Fibre2,21,6Long Fibre 

futurafibranova(Mg ha‐1)

y p g

l h l

1431961Ethanol from Short Fibres

40414204Ethanol from Woody Core

FibranovaFuturaL ha‐1

9,69,2Woody Core,,

54725165Total ethanol

Thank you for your attentionThank you for your attention

top related