fighting the arch-enemy with mathematics and climate...

Post on 02-May-2018

242 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Fighting the arch-enemy

with

mathematics and climate models

SETA - 6 March 2009

Henk van den Brink

KNMI

Fighting the arch-enemy with mathematics and climate models – p.1

The Netherlands with dikes..

Fighting the arch-enemy with mathematics and climate models – p.2

The Netherlands without dikes..

Fighting the arch-enemy with mathematics and climate models – p.3

Why this research?

1. Dutch law states that sea dikes have towithstand the sealevel that is reached once in104 years

2. What is the effect of increased greenhousegases on the extreme sea levels?

Fighting the arch-enemy with mathematics and climate models – p.4

Sea level depends on:

astronomical tides (deterministic)

sea level rise (slow process)

storm surge (stochastic):windsea level pressure

Fighting the arch-enemy with mathematics and climate models – p.5

Fighting the arch-enemy withmathematics:

Fighting the arch-enemy with mathematics and climate models – p.6

Xp vsk (γ not fixed):

Fighting the arch-enemy with mathematics and climate models – p.7

Xp vsk (γ = 0):

Fighting the arch-enemy with mathematics and climate models – p.8

As a Gumbel plot:

1.5

2

2.5

3

3.5

4

4.5

5

5.5

-2 0 2 4 6 8

2 5 10 25 50 100 103 104

wat

er le

vel [

m]

Gumbel variate

Hoek van Holland

return period

observations 1888-2005GEV to observations

Gumbel to observations

Fighting the arch-enemy with mathematics and climate models – p.9

water level in Hoek van Holland:

1.5

2

2.5

3

3.5

4

4.5

5

5.5

-2 0 2 4 6 8

2 5 10 25 50 100 103 104

wat

er le

vel [

m]

Gumbel variate

Hoek van Holland

return period

observations 1888-2005GEV to observations

Gumbel to observations

large statistical uncertainty

Fighting the arch-enemy with mathematics and climate models – p.10

water level in Hoek van Holland:

1.5

2

2.5

3

3.5

4

4.5

5

5.5

-2 0 2 4 6 8

2 5 10 25 50 100 103 104

wat

er le

vel [

m]

Gumbel variate

Hoek van Holland

return period

observations 1888-2005GEV to observations

Gumbel to observations

large statistical uncertainty

is extrapolation allowed...?

Fighting the arch-enemy with mathematics and climate models – p.10

water level in Hoek van Holland:

1.5

2

2.5

3

3.5

4

4.5

5

5.5

-2 0 2 4 6 8

2 5 10 25 50 100 103 104

wat

er le

vel [

m]

Gumbel variate

Hoek van Holland

return period

observations 1888-2005GEV to observations

Gumbel to observations

large statistical uncertainty

is extrapolation allowed...?

→ need more data optimally » 10000 year...

Fighting the arch-enemy with mathematics and climate models – p.10

Fighting the arch-enemy withclimate models:

global models

Fighting the arch-enemy with mathematics and climate models – p.11

Fighting the arch-enemy withclimate models:

global models

does not contain measurements

Fighting the arch-enemy with mathematics and climate models – p.11

Fighting the arch-enemy withclimate models:

global models

does not contain measurements

results depend on CO2 concentrations

Fighting the arch-enemy with mathematics and climate models – p.11

Fighting the arch-enemy withclimate models:

generate meteorological data with climatemodels:

Fighting the arch-enemy with mathematics and climate models – p.12

Fighting the arch-enemy withclimate models:

generate meteorological data with climatemodels:

ECMWF seasonal forecasts(1600 yrs) ⇒

Fighting the arch-enemy with mathematics and climate models – p.12

Fighting the arch-enemy withclimate models:

generate meteorological data with climatemodels:

ECMWF seasonal forecasts(1600 yrs) ⇒ESSENCE (ECHAM5 MPI-OM)20×(1950-2000)=1000 yrs17×(1950-2100)=2550 yrs

=3550 yrs

Fighting the arch-enemy with mathematics and climate models – p.12

Fighting the arch-enemy withclimate models:

generate meteorological data with climatemodels:

ECMWF seasonal forecasts(1600 yrs) ⇒ESSENCE (ECHAM5 MPI-OM)20×(1950-2000)=1000 yrs17×(1950-2100)=2550 yrs

=3550 yrs

feed wave/surge-model with wind and pressurefrom climate model

Fighting the arch-enemy with mathematics and climate models – p.12

Advantages ofmodelswrt observations:

strongly improved extreme-value-statistics:(almost) no extrapolation neededassumptions of extrapolation can be checked

dynamical-physical properties can beinvestigated

influence of greenhouse effect can bedetermined

Fighting the arch-enemy with mathematics and climate models – p.13

Possibilities:

extreme windextreme surge

extreme wave heights

extreme precipitation

extreme temperature

river discharges.....simultaneous occurrences of extremes

Fighting the arch-enemy with mathematics and climate models – p.14

Example 1: Surge in Hoek van Holland

0

1

2

3

4

5

6

7

-2 0 2 4 6 8

2 5 10 25 100 103 104

surg

e [m

]

Gumbel variate

return period [years]

observationsECMWF

→uncertainty 4 times smaller!

Fighting the arch-enemy with mathematics and climate models – p.15

Example 1: Surge in Hoek van Holland

1 febr 1953 ’26 dec 1987’

Fighting the arch-enemy with mathematics and climate models – p.16

Example 2: Maeslant closure barrier

Closure if level in Rotterdam ≥ 3 m NAP

Fighting the arch-enemy with mathematics and climate models – p.17

Example 2: Maeslant closure barrier

Closure if level in Rotterdam ≥ 3 m NAP

level influenced by:

Fighting the arch-enemy with mathematics and climate models – p.17

Example 2: Maeslant closure barrier

Closure if level in Rotterdam ≥ 3 m NAP

level influenced by:high tide at sea

Fighting the arch-enemy with mathematics and climate models – p.17

Example 2: Maeslant closure barrier

Closure if level in Rotterdam ≥ 3 m NAP

level influenced by:high tide at sealarge Rhine discharges

Fighting the arch-enemy with mathematics and climate models – p.17

Example 2: Maeslant closure barrier

0.2

0.5

1

2

5

10

0 0.2 0.4 0.6 0.8 1

retu

rn p

erio

d of

clo

sure

eve

nts

[yea

r]

sea level rise [m]

Fighting the arch-enemy with mathematics and climate models – p.18

Example 3: Petten’s seadike:

Fighting the arch-enemy with mathematics and climate models – p.19

Example 3: Petten’s seadike:

Dike fails if: dike load L + 0.3H > 7.6 [m]

Fighting the arch-enemy with mathematics and climate models – p.20

Example 4: CO2 effect on surge:

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-2 0 2 4 6 8

2 5 10 25 50 100 103 104

skew

sur

ge [m

]

Gumbel variate

Vlissingen and Cuxhaven

return period

Vlissingen

Cuxhaven1950-20002050-2100

ESSENCE + WAQUA

Fighting the arch-enemy with mathematics and climate models – p.21

Is the extrapolation always valid?

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

-2 0 2 4 6 8 10 12

10610510410310050251052

sea

leve

l at K

ey W

est,

Flo

rida

[m]

Gumbel variate

return period [years]

hurricane Wilma, October 2005

observations 1971-2008

Fighting the arch-enemy with mathematics and climate models – p.22

Is the extrapolation always valid? (2)

5

10

15

20

-1 0 1 2 3 4 5 6 74

5

6

7

8

9

2 5 10 25 50 100 103

win

d sp

eed

(m/s

)

Bea

ufor

t sca

le

Gumbel scale

return period [years]

’Martin’, december 1999 in France (ERA40)

Fighting the arch-enemy with mathematics and climate models – p.23

Probability of ’outlier’:

-2 0 2 4 6 8 10

10 100 103 104

y

Gumbel variate x=-ln(-ln(F(y)))

return period T

∆Xn

x=ln

(n)

y=yn

g(x)

x=-ln

(-ln

(F(y

n)))

yrF(y)

Fighting the arch-enemy with mathematics and climate models – p.24

Application:

Determine ∆X̂n for every record/grid point

Require independence between outliers

Compare distribution of independent values of∆X̂n with theory

Fighting the arch-enemy with mathematics and climate models – p.25

Locations of outliers:

300˚ 310˚ 320˚ 330˚ 340˚ 350˚ 0˚ 10˚

40˚

50˚

60˚

70˚

Fighting the arch-enemy with mathematics and climate models – p.26

Distribution of outliers:

-2

-1

0

1

2

3

4

5

6

-2 -1 0 1 2 3 4 5 6

25010050201052∆∧ X

n

Gumbel variate

number of independent records m

Gumbel to uk

Gumbel to uGEV to uk

theory

Conclusion: Fit Gumbel to uk!

Fighting the arch-enemy with mathematics and climate models – p.27

whole Northern Hemishpere (ERA40):

180˚ 240˚ 300˚ 0˚ 60˚ 120˚ 180˚

10˚

30˚

50˚

70˚

90˚

−2

−1

0 1

2 3

4 5

6

−2 −1 0 1 2 3 4 5 6

1001052

−2

0 2

4 6

8

−2 0 2 4 6 8

1031001052

−2

−1

0 1

2 3

4 5

6 7

−2 −1 0 1 2 3 4 5 6 7

1031001052

−2

0 2

4 6

8 1

0

−2 0 2 4 6 8 10

1041031001052

−2

−1

0 1

2 3

4 5

−2 −1 0 1 2 3 4 5

1001052

−2

−1

0 1

2 3

4 5

6

−2 −1 0 1 2 3 4 5 6

1001052

−2

−1

0 1

2 3

4 5

6

−2 −1 0 1 2 3 4 5 6

1001052

−2

0 2

4 6

8 1

0 1

2 1

4

−2 0 2 4 6 8 10 12 14

1061051041031001052

−2

−1

0 1

2 3

4 5

−2 −1 0 1 2 3 4 5

1001052

−2

−1

0 1

2 3

4 5

6

−2 −1 0 1 2 3 4 5 6

1001052

−2

−1

0 1

2 3

4 5

6

−2 −1 0 1 2 3 4 5 6

1001052

−2

0 2

4 6

8 1

0 1

2 1

4

−2 0 2 4 6 8 10 12 14

1061051041031001052

−2

−1

0 1

2 3

4 5

6 7

−2 −1 0 1 2 3 4 5 6 7

1031001052

−2

−1

0 1

2 3

4 5

6

−2 −1 0 1 2 3 4 5 6

1001052

−2

−1

0 1

2 3

4 5

6

−2 −1 0 1 2 3 4 5 6

1001052

−2

0 2

4 6

8

−2 0 2 4 6 8

1031001052

−1

0 1

2 3

4 5

6 7

−1 0 1 2 3 4 5 6 7

1031001052

−2

−1

0 1

2 3

4 5

6 7

−2 −1 0 1 2 3 4 5 6 7

1031001052

−2

0 2

4 6

8

−2 0 2 4 6 8

1031001052

−2

0 2

4 6

8

−2 0 2 4 6 8

1031001052

−2

−1

0 1

2 3

4 5

6 7

−2 −1 0 1 2 3 4 5 6 7

1031001052

−2

0 2

4 6

8 1

0

−2 0 2 4 6 8 10

1041031001052

−2

−1

0 1

2 3

4 5

6

−2 −1 0 1 2 3 4 5 6

1001052

−2

0 2

4 6

8

−2 0 2 4 6 8

1031001052

Fighting the arch-enemy with mathematics and climate models – p.28

1887

-yea

rE

SS

EN

CE

data

set:

180˚ 240˚ 300˚ 0˚ 60˚ 120˚ 180˚

−90˚

−70˚

−50˚

−30˚

−10˚

10˚

30˚

50˚

70˚

90˚

−2

−1

0 1

2 3

4

−2 −1 0 1 2 3 4

1052

−2

−1

0 1

2 3

4 5

6

−2 −1 0 1 2 3 4 5 6

1001052

−3

−2

−1

0 1

2 3

4 5

6

−3 −2 −1 0 1 2 3 4 5 6

1001052

0 5

10

15

20

0 5 10 15 20

1071061051041031001052

0 5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

1071061051041031001052

−2

0 2

4 6

8 1

0

−2 0 2 4 6 8 10

1041031001052

−3

−2

−1

0 1

2 3

4 5

6

−3 −2 −1 0 1 2 3 4 5 6

1001052

−2

0 2

4 6

8

−2 0 2 4 6 8

1031001052

−3

−2

−1

0 1

2 3

4 5

−3 −2 −1 0 1 2 3 4 5

1001052

−2

−1

0 1

2 3

4 5

6

−2 −1 0 1 2 3 4 5 6

1001052

−3

−2

−1

0 1

2 3

4 5

6

−3 −2 −1 0 1 2 3 4 5 6

1001052

−2

0 2

4 6

8

−2 0 2 4 6 8

1031001052

−2

0 2

4 6

8

−2 0 2 4 6 8

1031001052

0 5

10

15

20

0 5 10 15 20

1071061051041031001052

−2

0 2

4 6

8 1

0

−2 0 2 4 6 8 10

1041031001052

−2

0 2

4 6

8 1

0

−2 0 2 4 6 8 10

1041031001052

−2

−1

0 1

2 3

4 5

6

−2 −1 0 1 2 3 4 5 6

1001052

−3

−2

−1

0 1

2 3

4 5

−3 −2 −1 0 1 2 3 4 5

1001052

−3

−2

−1

0 1

2 3

4 5

−3 −2 −1 0 1 2 3 4 5

1001052

−3

−2

−1

0 1

2 3

4 5

6

−3 −2 −1 0 1 2 3 4 5 6

1001052

−2

0 2

4 6

−2 0 2 4 6

1031001052

−2

0 2

4 6

8 1

0 1

2 1

4

−2 0 2 4 6 8 10 12 14

1061051041031001052

0 5

10

15

0 5 10 15

1061051041031001052

−2

0 2

4 6

8

−2 0 2 4 6 8

1031001052

−3

−2

−1

0 1

2 3

4 5

6

−3 −2 −1 0 1 2 3 4 5 6

1001052

−3

−2

−1

0 1

2 3

4 5

−3 −2 −1 0 1 2 3 4 5

1001052

−2

−1

0 1

2 3

4 5

6

−2 −1 0 1 2 3 4 5 6

1001052

−3

−2

−1

0 1

2 3

4

−3 −2 −1 0 1 2 3 4

1052

−3

−2

−1

0 1

2 3

4 5

−3 −2 −1 0 1 2 3 4 5

1001052

−3

−2

−1

0 1

2 3

4 5

6

−3 −2 −1 0 1 2 3 4 5 6

1001052

−2

0 2

4 6

8 1

0 1

2 1

4

−2 0 2 4 6 8 10 12 14

1061051041031001052

−2

0 2

4 6

8 1

0 1

2

−2 0 2 4 6 8 10 12

1051041031001052

0 5

10

15

20

0 5 10 15 20

1071061051041031001052

−3

−2

−1

0 1

2 3

4 5

6

−3 −2 −1 0 1 2 3 4 5 6

1001052

−2

0 2

4 6

−2 0 2 4 6

1031001052

−2

−1

0 1

2 3

4 5

−2 −1 0 1 2 3 4 5

1001052

−3

−2

−1

0 1

2 3

4

−3 −2 −1 0 1 2 3 4

1052

−2

−1

0 1

2 3

4 5

−2 −1 0 1 2 3 4 5

1001052

−2

0 2

4 6

−2 0 2 4 6

1031001052

−2

0 2

4 6

8

−2 0 2 4 6 8

1031001052

−2

0 2

4 6

8 1

0 1

2

−2 0 2 4 6 8 10 12

1051041031001052

−2

0 2

4 6

8

−2 0 2 4 6 8

1031001052

−2

0 2

4 6

8

−2 0 2 4 6 8

1031001052

−3

−2

−1

0 1

2 3

4 5

−3 −2 −1 0 1 2 3 4 5

1001052

−2

0 2

4 6

8

−2 0 2 4 6 8

1031001052

−2

−1

0 1

2 3

4

−2 −1 0 1 2 3 4

1052

−3

−2

−1

0 1

2 3

4 5

6

−3 −2 −1 0 1 2 3 4 5 6

1001052

−3

−2

−1

0 1

2 3

4 5

6

−3 −2 −1 0 1 2 3 4 5 6

1001052

−2

0 2

4 6

8

−2 0 2 4 6 8

1031001052

−2

0 2

4 6

8 1

0 1

2

−2 0 2 4 6 8 10 12

1051041031001052

−2

0 2

4 6

8

−2 0 2 4 6 8

1031001052

−3

−2

−1

0 1

2 3

4 5

6

−3 −2 −1 0 1 2 3 4 5 6

1001052

−2

−1

0 1

2 3

4 5

−2 −1 0 1 2 3 4 5

1001052

−3

−2

−1

0 1

2 3

4 5

6

−3 −2 −1 0 1 2 3 4 5 6

1001052

Fig

hting

the

arc

h-e

nem

ywith

math

em

atics

and

clim

ate

models

–p.2

9

Extreme precipitation:

Wilson&Toumi (2005): R = κ(qρw)zm

R precipitation

κ efficiency/fraction

q specific humidity

w vertical velocity

ρ density

zm level

independent variables q, w, κ:

Pr(R > r) = exp[−(r

R0

)2/3

]

Fighting the arch-enemy with mathematics and climate models – p.30

Extreme precipitation (2):

R Weibull-distributed with k = 2/3

R2/3 exponential-distributed

fast convergence to Gumbel-distribution for R2/3

fit Gumbel distribution to R2/3!

Fighting the arch-enemy with mathematics and climate models – p.31

Extreme precipitation (3)

310˚ 315˚ 320˚ 325˚ 330˚ 335˚ 340˚ 345˚ 350˚ 355˚ 0˚ 5˚ 10˚ 15˚ 20˚ 25˚ 30˚ 35˚ 40˚ 45˚ 50˚

20˚

25˚

30˚

35˚

40˚

45˚

50˚

55˚

60˚

65˚

70˚

GEV shape parameter = 0 (Gumbel)1−day sums, annual maxima of R 2/3

−2.5 −1.5 −0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

−2 −1 0 1 2 3 4 5 6 7 8 9

10

−2 −1 0 1 2 3 4 5 6 7 8 9 10

Fighting the arch-enemy with mathematics and climate models – p.32

Extreme precipitation (4)

-2

0

2

4

6

8

10

-2 0 2 4 6 8 10

DX

n

Gumbel variate

GEV to R (k=free)GEV to R (k=0.10)Gumbel to R2/3

theory

Fighting the arch-enemy with mathematics and climate models – p.33

Extreme precipitation (5)

0

20

40

60

80

100

120

140

160

-2 0 2 4 6 8 10 12

10510410310050251052

prec

ipita

tion

[mm

/day

]

Gumbel variate

return period [years]

annual maximaGumbel to R2/3

GEV to R (k=0.10)GEV to R

MANSTON, England (1961-2005 – 19730920)Fighting the arch-enemy with mathematics and climate models – p.34

Back to sea levels:

use 17 runs of ESSENCE data (1950-2100)

feed surge model (WAQUA) with wind andpressure from ESSENCE

time series for 19 coastal stationsapply extreme value statistics to 50-year timeseries

17 × 19 × 3 = 969 recordsrequire 3-day interval between extremeevents

Fighting the arch-enemy with mathematics and climate models – p.35

Back to sea levels (2):

1˚ 2˚ 3˚ 4˚ 5˚ 6˚ 7˚ 8˚ 9˚

51˚

52˚

53˚

54˚

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

−2

−1

0

1

2

3

4

5

∆X −2 −1 0 1 2 3 4 5

Gumbel variate

Fighting the arch-enemy with mathematics and climate models – p.36

For observations:

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

201052∆∧ X

n

Gumbel variate

number of independent records m

Gumbel to subseriestheory

Fighting the arch-enemy with mathematics and climate models – p.37

Example for Scheveningen:

1

2

3

4

5

6

7

-2 0 2 4 6 8

2 5 10 25 50 100 103 104

sea

leve

l at S

chev

enin

gen

[m]

Gumbel variate

return period [years]

observations 1896-2005Gumbel to observations

GEV to observations

Fighting the arch-enemy with mathematics and climate models – p.38

Conclusion:

climate models are helpful tool for analysis of(never observed) extremes

Gumbel distribution optimal model for (all?)meteorological variables

not in tropicssimple power transformation needed

Fighting the arch-enemy with mathematics and climate models – p.39

Questions....?

Fighting the arch-enemy with mathematics and climate models – p.40

top related