finite element modelling · introduction to fem: stiffness equations fora axial bar element in...

Post on 04-Jun-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

FINITE ELEMENT MODELLINGCourse code:AME014

VI- semesterRegulation: IARE R-16

Mrs V. PrasannaAssistant Professor

DEPARTMENT OF MECHANICAL ENGINEERINGINSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)DUNDIGAL, HYDERABAD - 500 043

1

COS COURSE OUTCOMES

CO1 Describe the concept of FEM and difference between the FEM with other methods and problems based on 1-D bar elements and shape functions.

CO2 Derive elemental properties and shape functions for truss and beam elements and related problems.

CO3 Understand the concept deriving the elemental matrix and solving the basic problems of CST and axi-symmetric solids

CO4 Explore the concept of steady state heat transfer in fin and composite slab

CO5 Understand the concept of consistent and lumped mass models and solve the dynamic analysis of all types of elements.

2

UNIT-IINTRODUCTION TO FEM

3

Introduction to FEM:

Stiffness equations for a axial bar element in local co-ordinates using Potential Energy approach and Virtual energy principle.

Finite element analysis of uniform, stepped and tapered bars subjected to mechanical and thermal loads.

Assembly of Global stiffness matrix and load vector.

Quadratic shape functions.

Properties of stiffness matrix

Introduction

4

o DifferentialEquationd

EA(x) du

f (x) 0 0 x L

dx dx

o Boundary Condition Types

Prescribed displacement (essential BC)

Prescribed force/derivative of displacement (natural BC)

Axially Loaded Bar – Governing Equations and Boundary Conditions

5

Examples

Fixed end

Simple support

Free end

Axially Loaded Bar –Boundary Conditions

6

Elastic Potential Energy (PE)

Spring case

Axially loaded bar

Unreformed:deformed:

PE 0

1 L

PE 0

1kx2

PE 2

0

Elastic bodyT

PE 1 σ εdv

2 V

Potential Energy

PE 2 Adx

7

Potential Energy

Work Potential (WE)

Total Potential Energy

f: distributed force over a line P: point forceu: displacement

1 L L

2 Adx u fdx P uB

0 0

Principle of Minimum Potential Energy

For conservative systems, of all the kinematically admissibledisplacement fields, those corresponding to equilibrium extremizethe total potential energy. If the extremum condition is aminimum, the equilibrium state is stable.

1

Potential Energy + Rayleigh-Ritz Approach

Example:

Step 1: assume a displacement field

f is shape function / basis function

n is the order of approximation

Step 2: calculate total potentialenergy

u aii xi

i 1 to n

1

Potential Energy + Rayleigh-Ritz Approach

10

Example:

Step 3: select ai so that the total potential energy is minimum

Galerkin’s Method

11

dxdu~

Example:

d duEA( x) f (x) 0

Seek and approxdiu~mationso

dx dx i

w EA(x) dx dx

ux 00

V f ( x)dV 0

EA(x)du

PxL

u~x 0 0

EA(x) Pdx xL

In the Galerkin’s method, the weight function is chosen to be the same as the shape function.

Galerkin’s Method

12

dx

Example:

d du~ L

du~dwL

dx wiEA(x) dx

i dx i iw fdx w EA(x) du~ 0

V

f (x)dV 0

0

L

EA(x)dx dx

0 0

0 x L

Differential Equationd

EA(x) du

f (x) 0

dx dx

Weighted-Integral FormulationL

0 dx dx

d du

w EA(x)

f (x)dx 0

Weak FormL dw du du L

0 dx EA(x)

dx wf (x)dx w EA(x)

dx

0 0

FEM Formulation of Axially Loaded Bar – Governing Equations

13

1

Example:

Step 1: Discretization

Step 2: Weak form of one elementx2 dw du

x2

du

dxEA(x)

dx w(x) f (x)dx w(x)EA(x)

dx 0

x x

x2 dw du dx EA(x)

dx w(x) f (x)dx w x2 P2 w x1 P1 0

x 1

Approximation Methods – Finite Element Method

14

1

Approximation Methods – Finite Element Metho

15

Example (cont):

Step 3: Choosing shape functions- linear shape functions

u 1u1 2u2

x x 1 1 1

2 ;l 2

x x1

l1

22;

2

2 x x 1; x l

1

1l 2

x1

Approximation Methods – Finite Element Metho

16

1

Example (cont):

Step 4: Forming element equation

x2 1u u EA

x2

Letw 1, weak form becomes

2 1f dx 1P21P1 01u 2 u f dx P1 1

x

EA

l l

x2

x1

EA

l lx1

weak form becomes x2 1

u u

1 dx

x2EA EA Let w ,

2 EA 2 1 dx 2 f dx 2P2 2P1 01 u

x1l l x1

l l

x2

u2 2 f dx P2

x1

x2

1 fdxEA 1 11 u

x1

1 1

1P f P

2 P f P l 1 1 u

2 2

x1 fdx

x

Step 5: Assembling to form systemequation

1 I I I

0 u1 f1 P1

EI AI 1 uI

I

I

P

Approach 1:

Element 1: 2

f 2

2

l I 0 0 0 0

1 0

1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

E IIAII 0 0 uII f II PII

Element 2: 1 1

1

f II PII

2 2 2

0 0

1 1

l II 0 1 1 0 uII

0 0 0 0 0 0 0

E III AIII 0

0 0 0 0

Element 3:III 0

0 0 0 0

uIII f III PIII

l 1 1 1 1 0

0 0 0

0 0

0 1

0 1 1 uIII f III PIII

2 2 2

Approximation Methods – Finite Element Metho

19

Example (cont):

0 0

lII lIII

EIIIAIII

lIII

EIIIAIII

lIII

u

f P4 4 4 2 2

Example (cont):

Step 5: Assembling to form system equation

Assembled System:

EI AI

lI 0 0

I I

E AI I I I II II u1 f1 P1 f1 P1 I

f II lI

EIAI

lI

E A EII AII

lI lII

E A

lIIu2 f2 P2 f

2 1 P2 P1I II

EIIAII

lII

EIIAII EIIIAIII

0

EIIIAIII

lIII

u f P

f II f III PII

PIII

0 3 3 3 2 f III

1 2 PIII1

Approximation Methods – Finite Element Metho

20

Approximation Methods

21

Example (cont):

Step 5: Assembling to form systemequation

Approach 2: Element connectivity table

ke Kij IJ

Approximation Methods

22

0

Example (cont):

Step 6: Imposing boundary conditions and forming condense

E IIAII E II AII

Condensed system: EIAI

l I l II l II0

u f 0

E IIAII

E III AIII

2

2

l IIE IIAII

l II

E IIIAIII

l III l III u f 03 3

u f P

E IIIAIII

l III

l III

E III AIII 4 4

Step 7: solution

Step 8: post calculation

u u11 u22 u1

du d

dx

1 u2

d2

dx dx E Eu 1

d1

dx Eu2

d2

dx

Approximation Methods

23

Example (cont):

Summary - Major Steps in FEM

24

Discretization

Derivation of element equation

• weak form

• construct form of approximation solution over oneelement

• derive finite element model

Assembling – putting elements together

Imposing boundary conditions

Solving equations

Post computation

Linear Formulation for Bar Element

P1 f1

K11 K12 u1P

f K K

2 2 12 22 u2

where K x2 EAdi j ddx K , f x2 f dx

ij x1

ji i ix1

25

dx dx

1 2

x=x1 xx=x2

Higher Order Formulation for Bar Element

26

u(x) u11(x) u22 (x) u33 (x)

u(x) u11( x ) u22 ( x ) u33( x ) u44 ( x )

u(x) u11( x ) u22( x ) u33( x ) u44( x ) unn( x )

Natural Coordinates and Interpolation Functions

27

316 3

4 16 3

27 1 1

1, 9 1 1 1

3

x x1 x2

Natural (or Normal) Coordinate: 2

l /2

1 ,

12

1

22

1

,1

2 1 2 3 1 ,

12

9 1 1 1,

27 1 1 11

16 3

2

3 16

3

Quadratic Formulation for Bar Element

28

P f

P1 f1

K11

u

12 22 23 2P f 2 2

K12 K13 u1K K

K K

K

K u 13 23 33 3

3 3 x2 d d

1 d d 2

where Kij i j

dx EA

i j

d K ji EA

x1

x2

dx dx

1

1 d d l

l

x11

and fi i f dx i f 2d , i, j 1, 2, 3

Quadratic Formulation for Bar Element

29

1u

1 1u 1u( ) u ( ) u (1 1 2 2

) u ( ) u3 3 1 2

2 32

1 1

,2

2 3 11, 1

2

x x 1 x 2

2l / 2

d d xl

2

d 2

d x l

d1 1 ,d2

2 d 2 d3 3 dx l d

2 d 2 1

l dx l d

4

,

l dx l d

2 d 2 1

l

UNIT-IIANALYSIS OF TRUSSES AND BEAMS

30

Finite Element Analysis of Trusses:

Stiffness equations for a truss bar element oriented in 2D plane

Finite Element Analysis of Trusses

Plane Truss and Space Truss elements

Methods of assembly

INTRODUCTION

32

Arbitrarily Oriented 1-D Bar Element on 2-D Plane

33

sin0 0 u1 u1v 0

cos sin cos0 0 v

1

u

12

v2 0

0

0

0 cos sin u2

0

sin cosv2

Relationship Between Local Coordinates and Global Coordinates

34

Relationship Between Local Coordinates and Global Coordinates

35

sin0 0 P1P1 cos0 sin cos0 0

Q

1 0 co s sin

P2

P20

0

0 0 sin cosQ2

Stiffness Matrix of 1-D Bar Element on 2-D Plane

36

K AE 0 0

1 0 1 0

0 0

ij L 1 0 1 0

0 0 0 0

P1 cos2 sin cos cos2 sin cosu1 Q AE

sin cos sin2 2 sin cos sin v

1 1

P 2 2

L

cos sin cos u2 2

Q2 sin cos

sin cos

sin2

cos

sin cos sin2 v2

P1 cos sin 0 0 cos sin 0 0 u1

Q1 sin

P

02

Q2

0

cos0

0

0

cos

sin

0

sin

cos

ij

0

0

cos0

0

0

cos

sin

0

sin

cos

v1

u

2

v2

Arbitrarily Oriented 1-D Bar Element in 3-D Space

37

1 x x x

z

x

1

P ,u1 1

2 P2,u2

y

x

, , are the

Direction Cosines of the

bar in the x-y-z

coordinate system

0 u 1

P1 x 0

P1

v 0

u 0 0

0 0 0 v 1 y

y y 11 y y y 1 R 0

x x 0 0

Q 0 0 0 0 Q

0 0w 0

1

0 R1

1 z z z

0 0 0 w

1 P 0z 0z 0z P

u 0 0 0 u 2 x x x 22 x 2 Q

v2 0 y 2

x x

0 y y v

2

Q 0 0 0 0

R2 0 0 0 0

y

z

y

z

y R2

z 22w 0

0 0

0 0 0 z z zw2

Stiffness Matrix of 1-D Bar Element in 3-D Space

38

2

x

x

z2 P2 ,u2

P1 u1

Q 0

1 R1

1 0 AE

v 0

w1 0

y P2 L

u2

1

P1 ,u1x

Q 0

R2 0

2 v 0

w2 0

P1 2

xQ

1

x

x x x

2 x x x

2 u1 x x x

2

xx

x v1 x x2

x x 2 w1

R1

AE x x x x x xx xx x P2

2 x x x x

2x x x x x

u2

2

L

Q 2 2 v2

x x x x x x x x x R2 x x x x 2

x

x x x x2

1

0

0

0

0

0

1

0

0 0

0 0

01 0 0 0 0 0

0 0 0 1 0 00

0 0 0 0 00

0 0 0 0

xx

x w2

Q 1

P

AE3 3 3

v 1

Q3

34L1

3

1

3

3

3

u3

v3

3

3

P1 1 0 1

AE 0

Q 0 0 0 v0u1

Element I 1 0u1 2 P2

Q2

P2

L 1 0 1

0 0 0

1 Q AE 3 3 3 v

Element II 2 2

P3 4L 1 3u3

Element III

Q3

P1

3

1

3 v3

3 1 3u1

3

3

3

Matrix Assembly of Multiple Bar Elements

39

0v2

1 3 u23

3 13

Matrix Assembly of Multiple Bar Elements

40

P1 u1 Q

v

1 1 Element I

2

P AE u2

Q2 P

3

4L

v2 u

3

Q3

P1

v3

u1Q v 1

1

Element II2

P AE u2

Q2 P3

4L

v2u3

Q3

P1

v3

u1Q v

Element III 1 12

P

AE u2

Q2 P3

4L

v2u3

4 0 4 0 0 0

0 0 0 0 0 0

4 0 4 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 3 1 3

0 0 3 3 3 3

0 0 1 3 1 3

0 0 3 3 3 3

1 3

3 3

0 0

0 0

1 3

3 3

0 0

0 0

0 0

0 0

0 0

0 0

1 3

3 3

0 0

0 0

1 3

3 3Q3 v3

Matrix Assembly of Multiple Bar Elements

41

S v

S ?

R1 4 1 1 3 u 1

1

0 3

0 3 4

0

0

0 3 1

R 2

AE 4

0 3

0 4 1 0 3 1 3

3 u 2

S 2

3 3

R 4 L

0 1

0 0 3 0 3 3 1 1

v 2

u 3

3

S 3

3 3

1

3

3

3

3 3

3 3 3 3 v3

Apply known boundary conditions

R1 ? u1 0

S 0

1

v 1 ?

R2 F

AE

u2 ?

2

v 0

2

R3?

4 L

u

3 0

5 3

3 3

4 0

0 0

1 3

3 3

4 0

0 0

5 3

3 3

1 3

3 3

1 3

3 3

1 3

3 3

2 0

0 6S3 ? v3 0

Solution Procedures

42

3

3

3

S 0R2 F 5 3 1

3 v ?3 u1 0

1 1 R

1 AE

3

5

4 0

3 0

3 4

0

0 1 3 u2 ?

2 4 L

R3

?

S ?

?

u

3 0

S3 ? 3 3

0 0 3

1 3 1 3

3 3

0

6 v3 0

R2 F

u1 0v 0

S1 0 1 4FL AE

4 0 5 1

3 0

3 4 3u2

S ?

R1 ? 4 L 3 3 5 AE

2 R3

? 2 0

v2 0u

3

S3 ? 3 3

0 0 3 3

1 3 1 3

3 3 0

0

6

v3 0

3

2

0

3

35

0 3 3 0 1

3 v 0

2

3

Recovery of axial forces

P1 1 0 u1 0 4

1 0

v 0 5

Element Q1 AE 0 1

F 0

4FLP

0 0 0

4 2

u25AE

L 1 0 1 0

Q2 0 0 0 0 v 0 0

5

P 1

2

3 4FL

u2Element Q2 AE 3 3 3 v 05AE

P 3

3 1

3

1 2 3

4L 1

3

3u 0Q3

3 3 3 3 3v 0

P1 1 1 0Q

AE 3 3 3 3

3u1 0v 0

0 1 1

Element III

P

3 4L 1 3

u3

0

Q3 3 3

3 1

3 3 v3 0

0

0

2

I

II

F 1

1 5 3

5

5

3

5

Stresses inside members

5

Q3

3F

5

Q23

Element

1P 4F

52P

4F

5

4F

5A

Element

3P 1

F

F5

P 1

F2

5

II

I

Element III

Finite Element Analysis of Beams

Hermite shape functions

Element stiffness matrix

Load vector

Problems

Pure bending problems

Normal strain:x

y

Normal stress:

Normal stress with bending moment: x ydA M

Bending Beam

Moment-curvature relationship:

EI

1 M

Flexure formula: x

My

I

M EI EI

dx2

I y2dA

1 d2 y

y

Review

M Mx

Ey

x

Bending Beam

Review

Deflection

Relationship between shear force, bending moment and transverse load:

dV q dM V

dxdx

d 4 y

EI q dx4

Sign convention:

Governing Equation and Boundary Condition

{Natural BCs – if v

dxv ? & ? & EI ?& EI

dx dx2 dx

2at x L

dx

Essential BCs – if v or is specified at the boundary.

or is specified at the boundary.

d 2vEIdx2

d

d 2vEI

dx dx2

Governing Equationd 2

2d v(x)

dx2EI

dx2

q(x) 0,

0<x<L

Boundary Conditions

v ? &dv

? & EId 2v

?& at x 0

dx dx2 dx dx2

dv d 2v d d 2v ? ,dv

d EI d 2v ?,

48

1

Weak Form from Integration-by-Parts ----- (2nd time)

x2 d 2 w d 2v d x2

d 2v dwx2

d 2v 0 2

EI dx2 wqdxw EI dx2 dx EI dx2

x1 dx dx x x

0 dx2

x2 d 2w

x1

EI

d 2v

dx2

wq dx

wV

dw

dxM

x

2

x1

1

49

x2 d 2 w d 2v dw x2

wqdx wV

dxM

0 dx2

x1

EI dx2

x1

Q1 Vx1, Q2 M x1, Q3 V x2, Q4 M x2

x2 d 2 w d 2v 2dx EI dx2 wqdx w(x )Q1 1

w(x2 )Q3

dw

dx2Q

dw

dxQ4

1x 1 2

50

n

dx dx

Letj 1

v(x) u j j (x) and n 4

xx1

3 2 4 ;

4 x2 d 2w EIu

1 1 2

d 2 j

wqdx w(x )Q w(x )Q dw Q

xx2

dw Q

x1

dx2 j1

jdx2

1 1 2 3 2 4

1 2

Let w(x)= fi (x),

d dx2 d

2iEI 4u

i = 1, 2, 3, 4

d 2j qdx (x )Q (x )Q

i i Q

x1 dx 2 j1 j

dx2

i 1 1 i 2 3 dx 1 dx 2

i

Ritz Method for Approximation

Q2 4

u vx ; u dv

; u vx ;dx

u dv

51

dx

d

Q d i

d i

Q

x11

dx 2x1Q

Qi x2 3

dx x2

4

j1

K u qij j i

where K x2 EI 2i d 2 x

ij x1

dx2 dx2

i i

x1

dx and q 2 qdxj

4i

52

Ritz Method for Approximation

4

2 2 Q1 K11 1

d1

1

d1 x dx

x x2 dx

x

2

1 1

d

2

d

K14 u1 q dx

x dx

xQ2 u2 q2

3

1

d2Q3

K31

x1 dx3

x

x2 dx3x Q K41 K42 K43

K34 u3 q3K44 u4 q4

d4

1

4

1

2

d 3

4

d4

2

x1 dx x

x dxx

1

2

2

x2x1

K12 K13

K21 K22 K23 K24

53

K32 K33

Selection of Shape Function

3Q

Q K 2 12 22 23

K

Q4 K14

13 23 33

K K K

K K K

K24 K34 K44 u4 q4

34

u3

24 2

u q 2

q

3

d1

1d1

dx x x2 dx

x

2

1 1

d2

1

2

2

d21 0

dx

dx x 1 x 2 3

x

d3 3

d3

Interpolation

Propertiesx1 dx x2 dx

0 0

0 1 0 0

0 0 1 00 0 0 1

x

1

d4

44

d4

x

2

1x x2 dx x

dx x

1

2

Q1 K11 K12 K13 K14 u1 q1

x2x1

54

i

v ( ) u 11 u 2 2 u 3 3 u 4 4

and u1

1

d u2

d d 2

d u

3

d 3

d u

4

ddv( )

d4

d

where dv1

dv2u v u

1 1 2d

u v u3 2 4

d

Let i i a bi ci

2

d 3

Find coefficients to satisfy theinterpolation properties.

Derivation of Shape Function for Beam Element Local Coordinates

55

Derivation of Shape Function for Beam Element

1

(x)

In the global coordinates:l

dv1 (x) l

dv2 (x)v(x) v1 1

2 dx2

(x) v2 3

2 dx4

x x 2

x x 3

1 3 1 2 1

x x x2 x1 x2 x21 2

x x11 1

2

l x2

x x2 x1 x x

3

3 3 1 21

4 1 x2 x1 2 x x

2

l1

x2 x

x x 1 x

x

x x1x x

2 1 2 1

56

Element Equations of 4th Order 1-DModel

d

Q1 q1 K11 K12 K13 K14 u1Q q K u 2

2 12 22 23 24 2Q

q

K K K

K K K K 3 3

13 23 33 34

u3

Q4 q4

K14 K24 K34

where K x2 2 EI i x2 qdx

ij x1

dx2

d 2

dx2 ji

K44 u4

and q

i i

x1

dx Kj

57

Element Equations of 4th Order 1-DModel

Q1 q1 3L L2 u 2

Q q2 2 1

q

2EI

L3 3Lu v

q3

6 3L 6 3L u1 v1 2L2 3L

6 3L 6

3L L2 3L2 2L u

Q

Q3 4 4 4 2

x2

where qi iqdxx1

2

58

3

Example 1.

Governing equation:

0 x L

dx2 dx2

Weak form for one element

Finite Element Analysis of 1-D Problems - Applications

where

59

x2

2 2

x1dx2 dx2

EI

d w d v wq dx w x1Q1 dw

dxQ2 wx2Q3

x1

dw

dx 4Q 0x2

Q1 V(x 1) Q2 M (x1) Q3 V(x2) Q4 M (x2 )

d 2 EI d 2v q(x) 0

Finite Element Analysis of 1-D Problems

1

1

Approximation function: v(x) v (x) l dv1 (x) v (x) )

ldv

2 (x)

1 12 dx

2 2 32 dx

4

x x 2

x x 3

1 3 1 2 1

1

x12 x2 x2 x1

2

1x x 1x x1

2

l x2 x1

x x2 x x

3

3 3 1 2 1

4 x2 x 1 x2 x1 2 x x

2

x x

l x x x x1 2 1 2x x1

60

Finite Element Analysis of 1-D Problems

Finite element model:

Q1

Q 2EI 3L L 2 2

1

Q3

L3 3Lv2

Q 4

6 3L 6 3L v1

2L2 3L

6 3L 6

3L L2 3L 2L2 2

Discretization:

61

Matrix Assembly of Multiple Beam Elements

Q I 6 3L 6 3L 0 0 0 0 v

1

1QI

2 3L 2L 3L L 1Q I 2

3

Q I 2EI 3L

0 0 0 06 3L 6 3L 0 0 0 0 v

L2 3L 2L2 0 0 0 0 Element I

4

2

0 L3

0 0

3

40

0

0 00

0 00

00

00

0 0 0 0 0 v30 0 0 0 0

0 0 0 0 0 v0 0 0 0 0

0

4

0 0 0 0 0 00

0 00 0 0 0 0 0 0 0

0v1

1II Q1

Element II 0 3L

3L 0 0 v2

L2

Q2II

2EI 0 0 0 2

L3 0 0 6

0 0 6 3L 6

2L2 3L

3LQ3II 6 3L 0 0 v3II

0 0 3L L2 3L 2L2 0 0 Q 4

30 0 v4 0

0

0

0 0 0 0 0 0

0 0 0 0 0 00 4

2 2

62

Matrix Assembly of Multiple Beam Elements

3

4

3

P1 6 3L 6 3L 0 0 0 0 v1 M 3L 2L 2 3L L2 0 1 0 0 0

1

P 2 6 3L 6 6 3L 3L 6 3L 0 0 v2 M

2EI 3L L2 3 L 3L 2L2 2L2 3L L2 0 0

2 2 P L3 0 0 6 3L 6 6 3 L 3L 6 3L

v

M 03 0 3L L2 3L 3L 2L2 2L2 3L L2

3

P 4 0 0 0 0 6 3L 6 3Lv4M

0 0 0 0 3L L2 3L 2L2

4

0

0 0

1 0

2EI 0 0

0 0 0 0 0 0 0 v1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 v2 0 0 0 0 Element III

0 020

QIII

1 v36 3L2 6 3L2

Q2III

L 3

QIII 3L

3 L 0 0 0 0

0 0 0 0 3L 2L 3L

0 0 0 6 63L

v

3 4

4Q III

0

0 0 0 0 3L L2 23L 2L 4

63

0

Apply known boundary conditionsP1 ? 6

M ? 3L3L 6 3L2L2

3L L2 0 0

1

P2 ? 2EI 3L L

6 32L

0 4L12 0

2 6 3L 0

L2 3L 0 0

0 v2 0

2M 0

2 ?

L3 0 0 6 3L

P ?

3 3

M 0 2 2 3L L2 ?

3

3

P4 F 0

0 0 3L L

0

12 0 6 3L v 0

0 4L

0 6

0M 4 0

0

0 0

3L 6

3L L2 3L 2L2

3Lv4 ? ?

2 2 2

M 0M 2 0

3L L0 0 L2

L2 03 1

P4 F

M 0 2EI 0 0 0 0 6

2

6 22 3Lv 0

4 0

02

2L ?

3

0

1

P ? 3

v 0

M1 ? 2

0

3L

L2

3L

0

0

0 4L 3L L 0 0 v1 03L 0 4L2 3L

3L

L0

0

3L

0

0 0 3 ?

2

P ?

4

v

?

P3 ?

Solution Procedures

4

0 0 0 0 v1

0 0 0 01

64

0

L 6 3L 6

3L 2L 3L

6 3L 12 0 6 3L 0

0 0 6 3L 12 0 6

0

3L 4 ?

Solution Procedures

65

M 0

M 2 0 3L

L2 03 1

P4 F M 0 2EI 0

L2

0 0

0 00

0 3L 4L2 L2 0 0 v1 03L 0 L2 4L2 3L

0 6 0 3L 60 3L 0 L2 3L 2L2 v

0 3Lv2 0

4

1 P ?

3

L 6 0 0 2

M1 ?

3

3L 6 02

3L2

00

?

3 ?

2

P ?

4v ?

P ? 3 4 ?

2M 0 0

4L2

2EI 2

02

0

L2 1

? P ?? ? 2EI L2

2

L

P F L3 P ?

L3 v 3

4 4 2 4

M40

0

0

L2

4L2

3L

L2

3L

6 3L v ?

3L 2L2

4 ? P ? 3

3L 0 0 00 0 0

0 3L 0 03L 0 6 3L 4

3

M3

3L 6

2L

3L

3L

12

0

6

L

0

0

3L

0

0

0

0 0 6 12 3L 0 6 3L

M

1

Shear Resultant & Bending Moment Diagram

66

UNIT-III2D ANALYSISENTS

67

Introduction

69

Computation of shape functions for constant straintriangle

Properties of the shape functions

Computation of strain-displacement matrix

Computation of element stiffness matrix

Computation of nodal loads due to body forces

Computation of nodal loads due to traction

Recommendations for use

Example problems

Finite element formulation for 2D

70

u

Divide the body into connected to each other through special points (“nodes”)

u1 v 1 u2

d v 2

3 v3

u4 v4

u N d

u(x,y)N1(x,y)u1 N2(x,y)u2 N3(x,y)u3N4(x,y)u4

71

v

v(x,y)N1(x,y)v1 N2(x,y)v2 N3(x,y)v3N4(x,y)v4

u1 v 1 u 2

u u

(x, y) N1

v (x, y) u

3

0 N2 0 N3 0 N4 0

N1 0 N2 0 N3 0 N4

2

v3

u 4v

4

0

TASK 2: APPROXIMATE THE STRAIN and STRESS WITHIN EACH ELEMENT

Approximation of the strain in element ‘e’

x x

11 2

x2u u 3

x3u 4N (x,y) N(x,y) N(x,y) N (x, y)

ux

4

y

u(x,y)

x

v(x,y)

y 1N(x,y)

y1v 2

y2v

N(x, y) 3N (x,y)

y3v 4N (x,y)

vy

4

xy

u (x,y)

yv(x,y)

xN1(x,y)

y1

u N(x,y)1

x1v ......

72

x

73

y

xy

u1 v N (x,y) N(x,y) N(x,y) N(x,y) 1

1 2 3 4 0 u2

x 0

0

N1(x,y)x

0

0

N2(x,y)x

0

0

N3(x,y)x

0N4(x,y)v2

N (x,y)y

,y)u3

1 v3

y 4

uB

v4

y

N1(x,y

)

N2(x,y)

y

N2(x,y)

N3(x,y)

y

N3(x,y

)

N4(x,y)

N4(x

ε B d

Displacement approximation in terms of shape functions

u N d

Strain approximation in terms of strain-displacement

ε B d

Stress approximation DBd

Element stiffness matrix matrix

Summary: For each element

74

k VeB DBdV

T

Element nodal load vector

Sfb

STf

SN T dSe

T

V

Tf e

N X dV

Constant Strain Triangle (CST) : Simplest 2D finite element

3 nodes per element

2 dofs per node (each node can move in x- and y- directions)

Hence 6 dofs per element

75

The displacement approximation in terms of shape functionsis

N3u3u (x,y) N1u1 N2u2

v(x,y) N1v1 N2v 2 N3v3

u 1

v 1 u(x, y )

N 1

v (x, y ) 0

u

N

3 v 2 u 3

v3

u21 N26 d61

76

N N1

0

0

N1

N2

0

0

N2

N3

0 N 0

3

0 N 2 0 N 3 0 u 2

N 1 0 N 20

Formula for the shape functions are a b x cyN1

1 1 1

2A

N 2

a2 b2 xc2 y2A

where a b x c yN3

3 3 3

2A

A areaof triangle1 1 y1

2 2

a1 x2 y3

a2 x3 y1

a3 x1 y2

77

x3y2

x1 y3

x2 y1

b1 y2 y3

b2 y3 y1

b3 y1 y2

x1

det 1 x y

2

1 x 3y3

c1 x3 x2

c2 x1 x3

c3 x2 x1

The shape functions N1, N2 and N3 are linear functions of x and y

Properties of the shape functions

78

N 1

i

0

at node 'i'

at other nodes

3

79

At every point in the domain

i 1

3

i 1

3

i 1

iN 1

i iN x x

N i y i y

A 1

80

Geometric interpretation of the shape functions, at anypoint P(x,y) that the shape functions are evaluated

1N A

N 2 A 2

A

A 3

3N A

Approximation of the strains

u

x

x y

v B d y

xy

y xu v

N1(x,y)0

N3(x,y)0

N2 (x,y)

xN (x, y)

0

N (x,y)x

N(x,y)

B 0x 2 3 y

N(x,y)N (x,y)

1

1

y 0

N (x,y) N (x, y)1 2

x y

1

y0

N (x,y) N (x, y)2 3 3 x y x y

1 b3 0

2Ac1 c2

b 0 b2 0 0 c 0 c 0 c

1 2

b1 b2

3c3 b3

81

Inside each element, all components of strain are constant: hence the name Constant Strain Triangle.

Element stresses (constant inside each element).

82

DB d

IMPORTANT NOTE:

The displacement field is continuous across element boundaries

The strains and stresses are NOT continuous across element

boundaries

83

k

84

V

BT D B dVe

Since B is constant

k BTD BVe

dV BTDB At t=thickness of the element A=surface area of the element

Element stiffness matrix

ment

S

Element nodal load vector

f NT X dV

85

NT T dSe

Vf

b

f

S

e

ST

t

Element nodal load vector due to body forces

fb

T T

V e N X dV tAe

N X dA

86

f

b1x Aet

1 aN X dA

fb1 y

N X

1 bdA

fb

fb 2 x Ae

f Ae

N X2 adA

b 2y tAe

fb3 x

tAe

f

b3 y tAe

N 2 Xb dA

N3 Xa dA

N3 Xb dA

t

t

87

b3x t

fb3 y Ae

N3dA 3

tAe

N3 X a

N3 Xb dA

0 0

t t

1 3

EXAMPLE:

If Xa=1 and Xb=0

N Xe 1 a tA

b1 y

fb1x

A

Ae N1 Xb

dA

dA Ae

0N dA

t N X dA tA 0

f f

f b

b 2x

b 2y Aet

dA tAe

N 02

dA 30

f Ae

N2 X a

2 b

dA tAe

tA

f

SS e

Element nodal load vector due to traction

f NT T dSS

EXAMPLE:

fS

88

NT tl13

eT S dS

along 13

T

Element nodal load vector due to traction

89

l

l

Example

NTf tS

23e ST dS

along 23

f teN

S2 x23

2 along 23(1)dy

t 1

21 t

2

Similarly, compute

fS

02

3

y

fS

tx

fS

03 y

1

2

Recommendations for use of CST

90

Use in areas where strain gradients are small

Use in mesh transition areas (fine mesh to coarse mesh)

Avoid CST in critical areas of structures (e.g., stress concentrations,

edges of holes, corners)

In general CSTs are not recommended for general analysis

purposes as a very large number of these elements are required

for reasonable accuracy.

Example

91

Thickness (t) = 0.5 in E= 30×106 psi n=0.25

(a) Compute the unknown nodal displacements.

(b) Compute the stresses in the two elements.

Nodal coordinates

Realize that this is a plane stress problem and therefore we needto use

92

1

E 3.2 0 7

0 0.80

0

D 1 2 1

01

0.8

3.2 0 10 psi

0 0 1.2 2

Step 1: Node-element connectivity chart

ELEMEN

T

Node

1

Node

2

Node

3

Area

(sqin)

1 1 2 4 3

2 3 4 2 3

Node x y

1 3 0

2 3 2

3 0 2

4 0 0

For Element #2:2

B(2) 1 0

2 0

00 0 0 2

63 0 3 0

3 2 3 0 0 2

Recall

93

0b1

1

0 b 0 b2 3

1 2 3with

b1 y2 y3

c1 x3 x2

b2 y3 y1

c2 x1 x3

b3 y1 y2

c3 x2 x1

1c b1 b2

B 0 c 0 c 0 c2A c c

2 3 b 3

For Element #1: 2(2) y1 0; y2

x1 3;x2

2; y3 0

3; x3 0

Henceb1 2

c1 3

b2 0

c2 3

b3 2

c3 0

4(3) 1(1) 2 0 (local numbers within brackets) Therefore

B(1) 1 0

6

3

0 0 0 2

3 0 3 0

2 3 0 0

0

Step 2: Compute strain-displacement matrices for the elements

Step 3: Compute element stiffness matrices

(1)T

AtB Dk(1) B(1)

(1)T

(3)(0.5)B D B(1)

0.9833 0.5 0.3

0.2

0.3107

u1 v1 u2 v2 u4

0

0.2 v4

0.45 0.2 0.5333

1.4 0.3 1.2 0.2

0.45 0 0

1.2 0.2 0

0.5333

k(2) AtB(2)T D B(2)

T

(3)(0.5)B(2) D B(2)

0.9833 0.5 0.3

0.45

1.4 0.3

0.45

0.2

0.3107

u3 v3u4 v4

0.2 0.5333

1.2 0.2

0 0

1.2 0.2

0.5333

u2

0

0.2 v2

0

Step 4: Assemble the global stiffness matrix corresponding to thenonzero degrees of freedom

• u3 v3 u4 v4 v1 0

• Hence we need to calculate only a small (3x3) stiffness matrix

• K

0.983 0.45 0.2 u0.45 0.983

0 1071u

0.2

u1

0

u2

1.4

v2

v2

96

3

x03 32

2 y fS N (300)tdx

(300)(0.5) 3

x03 32

N dx

150x

dx3

x0 3

50 2 50 2 225 lb

x23

9

0

f f1x 0

0

f

2 x

f

f

2 y 2 y

f 2 y

The consistent nodal load due to traction on the edge 3-2

1 0 0 0 fS 2 y

97

Hence f2 y 1000 f

1225 lb

Step 6: Solve the system equations to obtain the unknownnodalloads Kd f

0.2u1 0 107 0.983

0

0

u2

0.450.45

0.983 0.2 0 1.4 v 1225

Solve to get

2

u 0.2337104 in 1

u2 0.1069104 in

v

2 0.9084104 in

S2 y

98

Step 7: Compute the stresses in the elements

In Element #1

99

With

(1) DB(1) d(1)

d(1)T

Calculate

u v u1 1 2

0.2337104

v u4 v42

0 0.1069104 0.9084104 0 0

114.1

(1) 1391.1

psi

76.1

100

In Element #2

(2) DB(2) d(2)

With

d(2)T u3 4 2 2v

Calculate

v3 u4 v u

0 0 0 0 0.1069104 0.9084104

114.1

28.52 psi

363.35

Notice that the stresses are constant in each element

(2)

Axi-symmetric Problems

Definition:

A problem in which geometry, loadings, boundary conditions and materials are symmetric about one axis.

Axi-symmetric Analysis

x rcos; y rsin; z z

• quantities depend on r and z only

• 3-D problem

• 2-D problem

101

Axi-symmetric Analysis

102

Axi-symmetric Analysis – Single-Variable Problem

1

ra u f (r, z) 0

r r 11 r

u(r, z) u(r, z)

a

z 22

a

z 00

Weak form:w u w u wu 0 r

a z a

22 a00

e

11 r z

wf (r, z)rdrdz

where

wqn dse

q a u(r, z)n a

u(r, z)n

n 11r

r 22z

z

103

Finite Element Model – Single-Variable Problem

e

e

i i

Qe

u ujj

jwhere j (r, z) j (x, y)

Ritz method:

Weak form

wi

Keue f e Qe

ij j i i

n

j 1

where

Ke

ij a11i ja

i j rdrdzr r 22

z z a

00 i j

f e frdrdze

i i n q ds

104

Single-Variable Problem – Heat Transfer

e

105

Heat Transfer:

1

rk T(r, z) T(r, z) f (r, z) 0r r r z k z

Weak form

r r z z0 w k

T w k

T wf (r, z)rdrdz

wqndse

where q k T(r, z)n k

T (r, z)n

n rr z

z

3-Node Axi-symmetric Element

T (r, z) T11T22 T33

1 r zr z r z2 3 3 2

1 z z2A

e r2 r3

3 2

1 r zr z rz

3 1 1 3

z z2

2A 3 1

e r r

1 3

1 r zr z r z

1z z

2 2 13

2A 1 2 er r

2 1

106

4-Node Axi-symmetric Element

T (r, z) T11T22 T33 T44

1

1

1

2 a b 1 a b

3 a b 4 1

a

b

107

Single-Variable Problem –Example

e

i i

Step 1: Discretization

Step 2: Element equation

e ri

jr zi

j

z rdrdz

e

i i n q dse

Kij

108

Qe f e frdrdz

Review of CST Element

Constant Strain Triangle (CST) - easiest and simplest finite element

Displacement field in terms of generalized coordinates

Resulting strain field is

Strains do not vary within the element. Hence, the name constant strain triangle (CST)•Other elements are not so lucky.•Can also be called linear triangle because displacement field is linear in x and y - sides remain straight.

109

Constant Strain Triangle

The strain field from the shape functions looks like:

– Where, xi and yi are nodal coordinates (i=1, 2, 3)

– xij = xi - xj and yij=yi - yj

– 2A is twice the area of the triangle, 2A = x21y31-x31y21

Node numbering is arbitrary except that the sequence 123 must go clockwise around the element if A is to be positive.

110

Constant Strain Triangle

111

Stiffness matrix for element k =BTEB tA

The CST gives good results in regions of the FE model where

there is little strain gradient

• Otherwise it does not work well.

Linear Strain Triangle

Changes the shape functions and results in quadratic displacement distributions and linear strain distributions within the element.

112

Example Problem

Consider the problem we were looking at:

I 0.113 / 12 0.008333in4

M c

1 0.5

I 0.008333 60 ksi

0.00207E

2

ML 25

2EI 2 29000 0.008333 0.0517in.

113

UNIT-IVSTEADY STATE HEAT TRANSFER ANALYSIS

114

CLOS Course Learning Outcomes

CLO 1 Understand the concepts of steady state heat transfer analysis

for one dimensional slab, fin and thin plate.

CLO 2 Derive the stiffness matrix for fin element.

CLO 3 Solve the steady state heat transfer problems for fin and

composite slab.

115

Thermal Convection

Newton’s Law of Cooling

q h(Ts T)

h: convective heat transfer coefficient (W m2 Co )

116

Thermal Conduction in 1-D

117

Boundary conditions:

Dirichlet BC

Natural BC

Mixed BC

Governing Equation of 1-D Heat Conduction

d (x) A(x)

dT (x) AQ( x) 0 0<x<Ldx dx

Weighted Integral FormulationL

d dT (x) 0 w(x) dx

(x) A(x)dx

AQ( x) dx

0

Weak Form from Integration-by-Parts

0

L dw dT w

dT L

dx A

dx wAQ dx A

dx 0 0

118

Weak Formulation of 1-D Heat Conduction (Steady State Analysis)

Formulation for 1-D Linear Element

T(x) T11(x)T22(x)

1 ( x) 2 ,2 ( x)

x x x x1

l l

f (x) AT

1x

, f (x) AT

2

1x

2

119

Formulation for 1-D Linear Element

Let w(x)= fi (x), i = 1, 2

T x2

A d

i

d x

j dx 2 AQdx (x )fj dx dx

i i 2 2

(x ) f i 1 1

0 2

j1 x 1

x

1

2

KijTj

j 1

Qi i (x2 ) f2 i (x1 ) f1

f1 Q1

K

f

2 Q2 K12

11 K12 T1

K22 T2

x2

120

where K Aij

dd

x1

i j dx dx

dx, Q AQdx, f A

x2

i i

x

1

dT

dx, f A

2

1 x1

dT

dxx2

Element Equations of 1-D Linear Element

A 1 f1 Q1

f

2 Q2

L 1

1T1

1 T2

where Q

121

i

x2

x1

AQ dx, f Ai 1

dT

dxxx1

, f2Adx

dT

xx2

1-D Heat Conduction - Example

A composite wall consists of three materials, as shown in the figurebelow. The inside wall temperature is 200oC and the outside airtemperature is 50oCwith a convection coefficient of h = 10 W(m2.K).Find the temperature alongthe composite wall.

1 70W m K, 2 40W mK, 3 20W m K

t1 2cm, t22.5cm, t3 4cm

122

Thermal Conduction and Convection- Fin

Objective: to enhance heat transfer

Governing equation for 1-D heat transfer in thin fin

d A

dT A Q 0c dx

cdx

Q 2h(T T) dx w 2h(T T) dx t

2h(T T ) w t loss A dx A

c c

d A dT

Ph T T A Q 0

dx cdx

c

where P 2 w t

123

Fin (Steady State Analysis)

Governing Equation of 1-D Heat Conduction

124

d (x) A(x)

dT (x) Ph T T AQ 0 0<x<Ldx

dx

Weighted Integral FormulationL

d dT (x) 0 w(x) dx

(x) A(x)dx

Ph(T T) AQ( x) dx

0

Weak Form from Integration-by-PartsL dw dT

0 dx A

dx wPh(T T) wAQ dx w A

dx

0 0

dT L

xx1 x x2

Let w(x)= fi (x), i = 1, 2

T x2 A di d j Ph dx x2 AQ PhT dx

dx dx i

0 2

j1j x i j

1

x

1

i (x2 ) f2 i (x1) f1

KijTj

j 1

Qi i (x2) f2 i (x1) f1

1f Q1

K11 K12 T1

f

2 Q2 K12

K22 T2

where K x2 A di d j Ph dx, Q x2 AQ PhT dx,ij dx dx i j i i

x x1

1

f AdT

1dx

, f2 A

dT

dx

Formulation for 1-D Linear Element

125

2

f1 Q1 A 1 1 1 T1Phl 2

f

2 Q2 L 1 1 6 1 2T2

Element Equations of 1-D Linear Element

where

126

Qi i AQ PhTdx,x1

x2

f1 Adx

dT dT

xx1

, f2 Adx

x x2

In general ux, t

Two approaches:

ux,tu j j x, t

ux,tu j tj x

Time-Dependent Problems

127

1 1 2 2

x2

1

1x2

Weak form:

ct

u u

x x

w u0 a x x t cw

u wf

dx Q w(x )Q w(x )

x

1

Q

a du

;dx x

2

Q a

du

dx

Model Problem I – Transient Heat Conduction

a

128

f x, t

n

1 1 2 2

x2

1

let: ux,tu j t j xj 1

and iw x

wu0 a x x tcw

u wf

dx Q w(x ) Q w(x )

x

K uM uFx2

K a i j dx Mij

ij x1

x x

x2

ci jdx

x1

x2

Fi i fdx Qi

x1

Transient Heat Conduction

129

Time Approximation – First Order ODE

k1 kabt

k k

adu

130

dt bu ft 0 t T u0 u0

Forward difference approximation – explicit

uk 1

ak k k

u t f bu

Backward difference approximation - implicit

u u t f bu

Stability Requirement

2t tcri 1 2 max

where K M uQ

Note: One must use the same discretization for solvingthe eigenvalue problem.

131

Transient Heat Conduction - Example

u

132

2u

t x2 0 0 x 1

u0,t0

u 1,t 0

tt 0

ux,01.0

UNIT-VDYNAMIC ANALYSIS

133

DYNAMIC EQUATIONS

P = ku K = fP

135

Stiffness and flexibility stiffeness matrix

136

137

138

140

Dynamic equations

141

Vibration analysis

142

143

The Vibration Eigen problem

144

141

top related