finite size effects on twisted rods stability - ida.upmc.fr · • semi -finite correction. •...

Post on 08-Oct-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Finite Finite size effects on twisted rods stabilitysize effects on twisted rods stabilitySébastien NeukirchSébastien Neukirch (joint work with G. van (joint work with G. van derder HeijdenHeijden & J.M.T. Thompson) & J.M.T. Thompson)

Elasticity of twisted rods

supercoiling of DNA plasmids

carbon nanotubesApplications

sub marine cables Climbing plants

2 types of experiments

Hypothesis

• no shear

• no extensibility

• no intrinsic curvature

• no gravitation

• rotation without sliding (D constant)

• sliding without rotation (constant R)

Equilibrium equations

u

GJ

EI

EI

M

duddS

d

dRdS

d

dFMdS

d

FdS

d

ii

rr

rrr

rr

rrr

r

=

×=

=

×=

=

00

00

00

0

3

3

)(

)(

)(

)(

)(

)(

)(

3

2

1

Su

Sd

Sd

Sd

SR

SM

SF

r

r

r

r

r

r

r

• Boundary conditions :

• 1 independent variable S : ODEs

• Static-Dynamic Kirhhoff analogy : spinning top <=> spatial elasticaelastica

7 unknowns

)()()( 333 BdAdBdkBArrrr

==

integrable

21 EIEI =

7 equations

What do we want to get ?

• All the static configurations of the rodfor the clamped boundary conditions.

• Stability of these configurations underthe 2 typical experiments.

Systems of ODEs with :

initials conditions

boundary conditions

In the parameters space ( L , EI , F, M , ...) there will be a ‘n-D’ solution manifold.

Define an index I [K. Hoffman]:I = 0 : stable,I = 1 : unstable,I > 1 : more unstable.

Number of negative eigenvalues of the second order differentialoperator of the constrained variational problem.

3 different models

∞=L

∞≤L

finiteL

homoclinic trajectory

homoclinic trajectory without fixed point

other trajectories in phase space

A

C

B

• A & B are much easier than C because less parameters

• we will compare, as we go A → B → C, :

1 - how stability changes,2 - how new solutions appear.

• Reduction to an equivalent oscillator (2D)

• Spatial localisation of the deformation.

• Applied force and moment // rig axis.

• Buckling :

• D end-shortening

• Parameters space :

• Solution manifold :

Rod of infinite length (van der Heijden - Champneys - Thompson)

TM 42 =

−=

T

M

TD

41

16 2

∞=R (as soon as M > 0)

( )( )max2 cos12 θ+= TM

Rigid Loading (R,D) :

max,, θTM

Rod of infinite length : sliding without rotationsliding without rotation

E

F

G

H

2max

πθ =1 2 3 4 5

M1

2

3

4

5

6

7

8T

unstable stable

this is a projection !

Very long rod : constconst. R. R const const. M. M≠

• Length L :

• Same formula for D :

−=

t

m

td

41

16 2

• Same solution manifold : ( )( )max2 cos12 θ+= tm

]2

1;

2

1[,,,,

2

+−∈===Γ==L

Ss

L

Dd

EI

GJ

EI

LTt

EI

LMm

• because we consider only part of the homoclinic :

• R depends on Γ whereas d and m2 do not.

+

Γ=

t

mArcCos

mR

24

∞<R

[Heijden, Thompson]

Very long rod : post-buckling surfacepost-buckling surface

1 2 3 4 5m

1

2

3

4

5

6

7

8t

• Semi-finite correction.

• tangency between const. R and const. D curves

• Stability limit :

- corresponds to

- more stable than in the infinite case.

( )

+Γ+Γ−=

t

ttm

4

214

22

2

• Special curve :

2max

πθ >

π2=R

• No instability for : π2<R

unstable stable

0.5 1 1.5 2 2.5 3 3.5 4 d

2

4

6

8

t

Very long rod : stability for constant stability for constant RR experiments experiments

• Stability changes at folds in D.

• We tune D : conjugate parameter is T.

• Index [Maddocks] ; potential V [Thompson] :

Level curves of :

−+−

Γ=

1614

161

2 22

0

tdArcCos

tdtR

• Special path : π2=R

• Curves with have no foldπ2<R

ddt

Γ+=

482

Lift-off Loss of stability :

0R

2 4 6 8 10 12R

1

2

3

4

5

6

7

8m

Very long rod : stability for constant stability for constant DD experiments experiments

• Stability changes at folds in R

• We tune R, conjugate parameter is - m

−±+

Γ=±

02

0

164224

dm

dmArcCos

mR

Level curves :

π22

+

Γ

−Γ

=m

ArcTanm

R

• At low D : jump to contact.

• At large D : quasistatic to planar elastica.

Γ=

2MILd

Loss of stability :

0d

Finite length rod : homoclinic

• Buckling under compression.

• Same equations as before but more (free) parameters.

• System is still integrable.

• No homoclinic trajectory in phase space (generically).

• Equivalent Wrench (M, F) no longer // rig.

• Shear force and bending moment at the clamps.

θ

θ

Finite length rod : buckling modes (clamped)buckling modes (clamped)

−=−

− tmSinttm

mCostmCos 4

2

14

24

2

1 222

−4 −2 2 4mz

−4

−3

−2

−1

1

2

3

4t

1st

2nd

3rd

2

2

=

πL

B

Tt

π2

L

B

Mm z

z =

Finite length rod : planar modes (clamped)planar modes (clamped)

−4 −2 2 4 6t

1

2

3

4

mx0

1st inflex

3rd inflex

1st non-inflex

2nd non-inflex

3rd non-inflex

2

2

=

πL

B

Tt

π20

0

L

B

Mm x

x =

Finite length rod : where is the post-buckling surface ?where is the post-buckling surface ?

01

23

4mz

−4

−2

02

4t

0

1

2

3

4

mx0

01

23

4mz

−4

−2

02

4t

buckling 1st mode

non-inflex 1st mode

inflex 1st mode

• we consider :

- non trivial initial conditions :

- free parameters :

• Global Representation Space [Domokos]

<=> unique configuration.

Boundary conditions :

• 2D solution manifold in 4D space.

• All the non-closed configurations

are s-symmetric (because ).

Finite length rod : post-buckling surfacepost-buckling surface

z

y

x

yxxyz

xzzxzy

yzzx

dz

dy

dx

dmdxtdytd

dmdmdytd

dmdxtd

3

3

3

30333

33033

333

=′

=′=′

+−−=′

+−=′

−=′

0,, xz mtm

( )00 ,,, θxz mtm

=

=

xz

y

dzdx

d

33

3 0

• Boundary value problem (BVP).

• Centre line of rod : 6D system :

00 =ym

Finite length rod : sliding without rotationsliding without rotation

LIFT OFF

BIRD CAGE

0.2 0.4 0.6 0.8 1 1.2 1.4D

−4

−3

−2

−1

1

2

3

t

R=7 rad .

0.2 0.4 0.6 0.8 1 1.2 1.4D

−3

−2

−1

1

t

R=6 rad .

0.2 0.4 0.6 0.8 1 1.2 1.4D

−2.5

−2

−1.5

−1

−0.5

0.5t

R=1 rad .

0.2 0.4 0.6 0.8 1 1.2 1.4D

−2

−1

1

2

3

t

R=10 rad .

Finite length rod : 3 typical shapes3 typical shapes

0 < D < 1 D = 1 1 < D < 0

closed revertedopened

Finite length rod : rotation without slidingrotation without sliding

Same fold as before (jump to contact).

New fold leading to hysteresis

D0=0.5 D0=0.8

D0=0.9

-2π

R

M

WX

YZ

O

D0=0.6

D0=0.7 D0=0.99−2 π 2 π

R

−1

1

m3

Finite length rod : connection between 1st and 2nd buckled modesconnection between 1st and 2nd buckled modes

−4−2

02

4

mz0

12

34

t

0

1

2

3

4

mx0

−4−2

02

4

mz

0

1

2

3

4

mx0

D = 1.1planar 1st mode inflex planar 2nd mode non-inflex

−2 π −π π 2 πR

−0.5

0.5

1

m3

Finite length rod : how to change how to change Γ

Γ2

Γ1

∆ ∆

Comparison of the 3 models for the jump to contactjump to contact

DêD∗

2 π

4 π

6 π

8 π

R

∞=L

∞≤L

finiteL

Finite length rod : overall stabilityoverall stability

1 2D

2 π

4 π

6 π

8 π

R

contact

hysteresis hysteresis

Planar elastica : connections between connections between inflexinflex. paths. paths

05

10t

0

πθ

0

2

4

6

mx0

05

10t

0

πθ

top related