fp7-ict-2007-2 helios large-scale integrating project large-scale integrating project (ip) ict call...

Post on 27-Mar-2015

220 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

FP7-ICT-2007-2 HELIOS Large-scale Integrating Project

Large-scale integrating project (IP) ICT Call 2

FP7-ICT-2007-2

pHotonics ELectronics functional Integration on CMOS

HELIOSDate of preparation: 09.10.2007Type of funding scheme: Large-scale integrating project (IP)Work programme topics addressed: ICT-2007.3.5: Photonic components and subsystemsName of the coordinating person: Laurent Fulberte-mail: Laurent.fulbert@cea.fr

• Objectives: to build a complete design and fabrication chain enabling the integration of a photonic layer with a CMOS circuit, using microelectronics fabrication processes. It will make accessible integration technologies for a broad circle of users in a foundry-like, fabless way

– Demonstrating the power of this approach through demonstrators addressing different industrial needs

– Preparing the future by exploring alternative approaches that offer clear advantages in terms of integration on CMOS.

WP

12:

trai

nin

g

and

dis

sem

inat

ion

WP

12:

trai

nin

g

and

dis

sem

inat

ion

WP8: Modulator

demonstrator

WP8: Modulator

demonstrator

WP

0:

Pro

ject

man

agem

ent

WP

0:

Pro

ject

man

agem

ent

WP1 : Roadmapping and exploitationWP1 : Roadmapping and exploitation

WP7: integration with CMOS

WP

2:

sou

rce

WP

2:

sou

rce

WP

3:

mo

du

lato

rW

P3:

m

od

ula

tor

WP

4:

pas

sive

cir

cuit

ryW

P4:

p

assi

ve c

ircu

itry

WP

5:

ph

oto

det

ecti

on

WP

5:

ph

oto

det

ecti

on

WP

6:

pac

kag

ing

WP

6:

pac

kag

ing

WP9: Transceiver

demonstrator

WP9: Transceiver

demonstrator

WP

11:

inn

ova

tive

pro

of

of

con

cep

tW

P11

: in

no

vati

vep

roo

fo

fco

nce

pt

WP10: Photonic QAM

Wireless

transmission demonstrator

WP10: Photonic QAM

Wireless

transmission demonstrator

• photonics/electronics convergence at the process level and design level

• Different activities:

– Developing the whole “food chain”• high performance generic building blocks

Task 11.1 Amorphous Si modulator (IMM)Exploit amorphous silicon (a-Si:H) as a material to form a modulator to be fabricated at the end of the CMOS process.

We plan to design, fabricate and characterise field-effect driven elements.The proposed basic technology is shown, with possible changes in the cladding layer. The proposed stacked modulator scheme highly enhances the electro-optical effects in the region where they are more effective on the propagating beam.

WP11: INNOVATIVE PROOF OF CONCEPTS (CNRS)

-Task 11.2: Silicon nanocrystals for light emission and amplification (UNITN)Realize an injection silicon laser based on active Er impurities which are excited via electrical injection into Si-nc embedded in a dielectric (oxide, nitride)

1. LED with Si-nc emitting at 0.75 μm with EQE of about 1% and a turn on voltage of less than 5V2. LED with Er coupled to Si-nc emitting at 1.55 μm with same EQE and turn on voltage3. Waveguide amplifiers with Er coupled to Si-nc, electrically driven and having a gain of 10 dB4. Injection silicon laser emitting at 1.55 μm

Task 11.3 Novel concepts of heterogeneous integration (CNRS)

This task will concentrate on the development of an innovative technological/conceptual scheme for 3D microphotonics on CMOS based on III-V/Silicon heterogeneous integration and diffractive photonics and opens the way to far larger functionality and wider potential impact than in the version of INTEL/PICMOS

IMM funding:Uni-RCIMM-BOIMM-Na

RTD (A) [75%]: personnel, other direct costs [project specific materials needed for cleanroom, silicon substrates, process gases, chemicals, targets, consumables for polishing: 30k€; parts needed for demonstrators (photomasks, fibers, glues): 5 k€; travels: 10k€]

OTHER (D) [100%]: networking, organisation, dissemination (publications, participation to seminars, training)

(indirect costs: 86,96% of personnel cost)

Project duration: 48 months

Tre stratiBarriera: aSiCN 29 nmCladding: nitruro

‘simmetrico’Barriera: aSiCN 30 nmCladding: nitruro

1.5 micron

1 micron

1 micron

1 micron

1 micron

1 micron

3 stratiBarriera: aSiCN 30 nmCladding: nitruroUltima barriera: aSiCN

1 micron

1 micron

1 micron

6 stratiBarriera: aSiCN 38 nmCladding: nitruroUltima barriera: aSiCN

0.5 micron

0.5 micron

0.5 micron

0.5 micron

0.5 micron

0.5 micron

6 strati SOTTILE: guide 0.2 micron, totale 1.2 micronBarriera: aSiCN 38 nmCladding: nitruroUltima barriera: aSiCN

0.2 micron

0.2 micron0.2 micron0.2 micron0.2 micron

2 strati, ultra SOTTILE: guide 0.125 micron, totale 0.25 micronBarriera: aSiCN 40 nmCladding: nitruroUltima barriera: aSiCN

5 strati DROGATO: guide 0.25 micron, totale 1.25 micronBarriera: aSiC 40 nmCladding: 1.1 micron SiO2

Ultima barriera: SIContatto ZnO

5 strati intrinseco in MDZ3: guide 0.25 micron, totale 1.25 micronBarriera: aSiC 40 nmCladding: 1.1 micron SiO2

Ultima barriera: SIContatto ZnO

ZnO

c-Si tipo p c-Si tipo n

ZnO

c-Si tipo p c-Si tipo n

Segnale elettrico modulante

Segnale ottico in uscita dalla guida

6 strati SOTTILE: guide 0.2 micron, totale 1.2 micronBarriera: aSiCN 38 nmCladding: nitruroUltima barriera: aSiCN

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

ZnO

30 40 50 60 70 800

80

160

240

he

igh

t (n

m)

m

amorphous silicon ITO SOG on ITO amorphous silicon on SOG on ITO amorphous silicon on ITO

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

ITO

14167 a-Si:H1.204m SiO2

R (

%)

265 nm roughness16211 A a-Si:H 663 A ITO23120 A SiO2

R (

%)

30 40 50 60 70 800

80

160

240

he

igh

t (n

m)

m

amorphous silicon ITO SOG on ITO amorphous silicon on SOG on ITO amorphous silicon on ITO

0.2 micron

0.2 micron

0.2 micron

0.2 micron

0.2 micron

ITO

Spin-on-Glass

The following activities were performed

• study and optimisation of the films:a-Si:H, SixN1-x, a-SiC:H, a-SiCN films deposited and

characterised, each in different stoichiometric compositionsoutcome: a-SiC:H will be used as insulator in future devices

EXPERIMENTAL ACTIVITY

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 151E-19

1E-18

1E-17

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

I/E

(A c

m /

V)

dot

K737 - a-SiCN:H standard K734 - a-SiCN:H, low Si content K733 - a-SiCN:H, low Si content, low T K735 - a-SiCN:H, Si/C ratio as for K734 K736- a-SiC:H "stechio" K738- a-SiC:H"stechio" H-diluted in the plasma K536 - a-SiCN:H, OLD DATA

400 600 800

0.0

0.5

1.0

1.5

2.0

2.5

3.0

n,k

Wavelength (nm)

K737 - Carbonitruro standard K734 - Carbonitruro (poco silicio) K733 - Carbonitruro (poco silicio) bassa T K735 - Carburo con rapporto Si/C come K734 K736 - Carburo "stechio" K738 - Carburo "stechio" diluito

electrical characterisation optical characterisation

• speed issues

speed depends on =RC, where

R resistivity of a-Si:H

C

doping has a key role SiCSiCt ,1

log (time,s)

log(electron, cm-3)

simulated elec. conc. vs. time at the internal a-Si:H/insulator interfaces for different conductivities of a-Si:H

tSiC

(undoped)

111110 cmSia

410 Sia

310 Sia

3108 Sia

Drogaggio Aumenta la velocità

Aumenta l’assorbimento

80 sccm SiH4

0.9 sccm PH3

Ea = 0.16 eV

D = 5.6 E-3 ( cm)-1

Simulazione nir:=30°KIR inferiore a 0.001

V aumenta

Red shift: aumenta nd

Wavelength (nm)

Misure ellissometro su modulatore polarizzato

Meeting annuale: 16 giugno GRAZ

top related