functional itô calculus and volatility risk management bruno dupire bloomberg l.p/nyu aims day 1...

Post on 14-Dec-2015

229 Views

Category:

Documents

6 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Functional Itô Calculusand Volatility Risk Management

Bruno DupireBloomberg L.P/NYU

AIMS Day 1

Cape Town, February 17, 2011

Outline1) Functional Itô Calculus

• Functional Itô formula• Functional Feynman-Kac• PDE for path dependent options

2) Volatility Hedge

• Local Volatility Model• Volatility expansion• Vega decomposition• Robust hedge with Vanillas• Examples

1) Functional Itô Calculus

Why?

process. theof history,or

path,current theof functions it to extend We

processes. of functions with deals calculus Itô

prepayment MBS path rateinterest

reaction viralantigen toexposure

payoffdependent path history price

level water etemperatur

:patternscertain on depends

)(

eConsequencCause

link The .cumulative isy uncertaint ofimpact theoften,Most

ttf

t XfyX

Review of Itô Calculus

• 1D

• nD

• infiniteD

• Malliavin Calculus

• Functional Itô Calculus

current value

possible evolutions

Functionals of running paths

)( and )( is at of valueThe

)(,for ,: :functional

}t][0, functions RCLL{

t][0, sections starting allon but T][0,path wholeon theonly not defined sFunctional

],0[

tXxsXtsX

XfXff

tttt

ttt

Ttt

t

0 T

12.87

6.32

6.34

Examples of Functionals

hit is last value First time-

average rolling ofMax -

variablesstate ofnumber Infinite

(3) rangeon Option -

(2)Asian -

(1)European -

: time)(excluding variablesstate ofnumber Finite

priceoption dependent path of caseimportant thecovers onelast The

price greplicatin-Super -

valuefinal ofn expectatio lConditiona-

drawdownCurrent -

averageCurrent -

Derivatives

t

XfXfXf

h

XfXfXf

tttstXsXtssXsX

htXtXtssXsX

fX

ttt

ttt

tht

htx

tttttt

thtt

ht

tt

Tt

tt

)()(lim)(

derivative Time

)()(lim)(

derivative Space

],[for )()( for )()(

)()( for )()(

,:,For

},t][0, functions RCLL{

,

0

0

,,

],0[

Examples

00

)(2010

tt

ttx

t

t

ut

xf

xxf

QVduxxf

t

hf

x

hf

txhXf tt

t

x

then ),,()( If

Topology and Continuity

tsYXYXd

stYX

ststst

st

,),(

) assumecan (we ,in , allFor

:distance -

)()(),(

,:0,0

: if at continuous is : functionalA

:continuity -

tsst

s

t

XfYfYXd

Y

Xf

t s

X

Y

Functional Itô Formula

xdfdtfdxfdf

xdXfdtXfdxXfXfXf

Tf

Xx

tCxC

smoothf

xxtx

T

ttxx

T

tt

T

ttxT

t

2

1

notation, concise morein or,

)(2

1)()()()(

, 0 allfor and functionalsmooth allfor then,

t],[0,over path its denotes and martingale-semi continuous a is If

Theorem

.continuous- s themselvesderivative e with thes,in and in

,continuous- isit if is : functional a :Definition

0000

12

Fragment of proof

))()((

))()((

))()((

)()(

ff

ff

ff

ffdf

Functional Feynman-Kac Formula

))( martingale the toformula Itô functional(apply

0)(2

)()()()()()(

satisfiesit smooth, is if Then,

)()(],,[for

)()(],,0[for where

]|)([)(

by : define We. :,: ,integrablesuitably For

)()(

payoff.dependent path and dynamics Markovnon FK to oftion Generalisa

0)(

2

)(

t

duXr

txxt

tttxttt

uuuu

tT

ttT

duZr

t

T

tttt

Xfe

XfXb

XfXrXfXaXf

f

dWZbduZadzTtu

uYuZtu

YZZgeEYf

frgg

dWXbdtXadx

t

u

T

tu

Delta Hedge/Clark-Ocone

ttTtt

T

TT

ttxt

T

TT

ttxtt

ttxt

T

TT

ttTt

dWXXgDEXbXXgEXg

dWXfXbXfXfXg

dWXfXbXdf

r

dWXfXbXXgEXg

YZZgEYff

]|)([)(]|)([)(

:CalculusMalliavin from

formula Ocone-Clark the tocompared becan It

)()()()()(

and

)()()(

,0 with Kac-Feynman and Itô functional From

)()(]|)([)(

:tionRepresenta Martingaleexplicit thehave then we

smooth, is ]|)([)(by defined If

00

00

00

P&L

St t

St

Break-even points

t

t

Option Value

St

CtCt t

S

Delta hedge

P&L of a delta hedged Vanilla

Functional PDE for Exotics

dependent.path be will and generalin However,

. variablesstate ofnumber infinitean even with options,dependent

pathfor holds also optionsEuropean for off- trade The

0))()(()()(2

1)(

satisfiesit then

smooth, is ]|)([)(by given If

2

)(

Γ

Γ/

XfxXfXrXfbXf

YZZgeEYff

tttxttxxtt

ttT

duZr

t

T

tu

Classical PDE for Asian

term.convection bothering a is

02

10

2

1

,0

),,()(, Define ),( Assume

)()( :CallAsian of Payoff

2

222

2

2

0

0

I

lx

x

lb

I

lx

t

lfbf

x

lf

x

lfI

t

l

I

lxfxI

tIxlXfduxIdWtxbdx

KduxXg

xxt

xxxx

ttt

t

tttutttt

T

uT

Better Asian PDE

0))()(2(2

10

2

1

)()(2

)()(

0

),,()(,)(][ Define

2

22

2

2

222

2

22

2

2

2

00

J

htT

Jx

htT

x

hb

t

hfbf

J

htT

Jx

htT

x

hf

J

htT

x

hf

tTJ

t

hfJ

tJxhXfxtTduxduxEJ

xxt

xx

x

x

tt

tttt

t

u

T

utt

2) Robust Volatility Hedge

Local Volatility Model• Simplest model to fit a full surface• Forward volatilities that can be locked

CqK

CKqr

K

CK

TK

T

C

dWtSdtqrS

dS

2

22

2

2

,

),()(

Summary of LVM

• Simplest model that fits vanillas

• In Europe, second most used model (after Black-Scholes) in Equity Derivatives

• Local volatilities: fwd vols that can be locked by a vanilla PF

• Stoch vol model calibrated

• If no jumps, deterministic implied vols => LVM

),(][ 22 tSSSE loctt

S&P500 implied and local vols

S&P 500 FitCumulative variance as a function of strike. One curve per maturity.Dotted line: Heston, Red line: Heston + residuals, bubbles: market

RMS in bpsBS: 305Heston: 47H+residuals: 7

Hedge within/outside LVM

• 1 Brownian driver => complete model

• Within the model, perfect replication by Delta hedge

• Hedge outside of (or against) the model: hedge against volatility perturbations

• Leads to a decomposition of Vega across strikes and maturities

Implied and Local Volatility Bumps

implied to

local volatility

P&L from Delta hedging

T

txxtt

T

ttx

T

txxt

T

tt

T

ttxTT

ttt

txxttt

tT

Q

tT

ttt

dtYftyvvdyYfXf

dtYfvdtYfdyYfYfYfYg

xydWvdyy

XftxvXf

XXgEXffg

dWtxvdxqr

v

0 000

0000

00

0

0

)()),((2

1)()(

)(2

1)()()()()(

formula, Itô functional by the , with follows If

0)(),(2

1)( PDE, functionalBy

])([)(by define,For

.),(,0 Assume

0

Model Impact

Recall

g(YT ) f (YT ) f (X0) x f (Yt ) dy t 0

T 1

2(v t v0(y t , t)) xx f (Yt ) dt

0

T

Hence, with g (v) E Qv [g(YT ) X0] and v (x, t) the transition density for v,

g (v)g (v0) 1

2E Qv [ (v t v0(x t , t)) xx f (X t ) dt

0

T ]

g (v0) 1

2 v (x, t) E Qv [(v t v0(x, t)) xx f (X t ) x t x]dx dt

0

T

Comparing calibrated models

][],[

:alive""by ngconditioni ofimpact theevaluate toamountsIt

),(][ options, vanillasame on the calibrated are and If

],)),([(),(

),(2

1

],)()),([(),(),(2

1

])()),([(),(2

1)()(

option,Barrier out -knock aFor

])()),([(),(2

1)()(

Recall

00

0 02

2

0 0

0 00

0 00

xxvEalivexxvE

txvxxvEvv

dtdxalivexxtxvvEx

txftx

dtdxalivexxXftxvvEtxPtx

dtdxxxXftxvvEtxvv

dtdxxxXftxvvEtxvv

ttQ

ttQ

ttQ

T

ttQalivev

alive

T

ttxxtQ

alivev

T

ttxxtQv

gg

T

ttxxtQv

gg

vv

v

v

v

v

v

Volatility Expansion in LVM

])([),(2

1),( where

),(),()(

])([),(),(2

1)()(

),(),( : form theof LVM a is wherecase In the

])()),([(),(2

1)()(

general,In

00

00

00

000

00

0 00

xxXfEtxtxm

dtdxtxutxmv

dtdxxxXfEtxutxvuv

dWtxutxvdxuvv

dtdxxxXftxvvEtxvv

ttxx

Quv

T

g

T

ttxx

Quvgg

tttt

T

ttxxtQv

gg

uv

uv

v

Fréchet Derivative in LVM

)derivative(Fréchet ),(at variancelocal the to ofy sensitivit theis

])([),(2

1),(

where

),(),(

])([),(),(2

1

)()(lim,

:satisfies ofdirection in the derivativeFréchet The

])([),(),(2

)()(

,particularIn

00

00

00

0

0

00

0v

000

txg

xxXfEtxtxm

dtdxtxutxm

dtdxxxXfEtxutx

vuvu

u

dtdxxxXfEtxutxvuv

ttxx

Qv

T

T

ttxx

Qv

ggg

T

ttxx

Quvgg

v

v

uv

One Touch Option - Price

Black-Scholes model S0=100, H=110, σ=0.25, T=0.25

One Touch Option - Γ

PtSmTO ..2

1),(:..

Up-Out Call - Price

Black-Scholes model S0=100, H=110, K=90, σ=0.25, T=0.25

Up-Out Call - Γ

PtSmUOC ..2

1),(:

Black-Scholes/LVM comparison

price. LVM reach the toenables Scholes-Black theofinput y volatilitno case, In this

Vanilla hedging portfolio I

?),(function get the can we How

),(])([])([),(

t)(x, allfor ifonly and if moves volatility

small all hedges vanillasof ),( Portfolio

.at variancelocal theto

ofy sensitivit theis ])([),(2

1),( Recall

00

00

2

2

,

g

TK

txhxxXfExxXEx

txPF

dTdKCTKPF

(x,t)

xxXfEtxtxm

ttxx

Q

ttPFxx

Q

TK

ttxx

Qv

vv

v

Vanilla hedging portfolios II

bumps. volimplied y tosensitivit no hence

bumps vollocal y tosensitivit no has and 0]),()([,,

00 with 0)(then 2

1)( take weIf c)

.)()( Thus,

])([),( with ),(),(]),()([),(

),(),)((),( b)

)(),(condition boundary with 0)( , call aFor

2

1)( define we),,(For a)

2

2

20

2

2

2

2

2

2

2

,

2,

2

2,

2

,

20

2

0

00

PF-fxxtxx

PFXfEtx

kk(x,T)kLx

hv

t

hhL

hLkL

xxXfEtxhtxx

PFtxhxxtx

x

PFXfEtxk

txtxx

PFLdTdKCTKPF

xTxx

C

x

CLC

x

kv

t

kkLtxk

ttxx

Q

ttxx

Q

ttxx

Q

TK

KTKTK

TK

v

vv

Example : Asian option

.at variancelocal theto ofy sensitivit theis ])([),(2

1),(

1maturity20 volatility100S, )( : off-Pay v

g

00

0

0

00 (x,t) xxXfEtxtxm

TvKKdtxXgdWdx

ttxx

Qv

T

tttt

v

K

T

KT

Asian Option Hedge

KT

20

2

,

),(),(

2

1),(),(

),( with hedgeatility Robust vol

x

TKhTKv

t

TKhTK

dTdKCTKPF TK

K

T

Forward Parabola - Γ2)()(

12 TTT SSXg Payoff:

= 1, = 2, = 100, = 101T 2T 0S σ

Forward Parabola Hedge

Forward Cube - Γ3)()(

12 TTT SSXg Payoff:

= 1, = 2, = 100, = 101T 2T 0S σ

Forward Cube Hedge

Forward Start - Γ )()(

12 TTT SSXgPayoff

= 1, = 2, = 100, = 101T 2T 0S σ

Forward Start Hedge

One Touch - Γ}104{max1)( HST T

XgPayoff

= 1, = 104 , = 100, = 51T H 0S σ

One Touch Hedge

Γ/VegaLink

Robustness

• Superbucket hedge protects today from first order moves in implied volatilities; what about robustness in the future?

• After delta hedge, the tracking error is

• In the case of discrete hedging in the model or fast mean reversion of vol, variance of TE is proportional to

TE 1

2(v t v0(y t , t)) xx f (Yt ) dt

0

T

E[ ( xx f (Yt ))2 dt

0

T ] E[( xx f (Yt ))2 y t y] (y, t)dydt

0

T

Hedgeability

• The optimal vanilla hedge PF minimizes

and thus coincides with the superbucket hedge as

• The residual risk is

• The hedgeability of an option is linked to the dependency of the functional gamma on the path

xxPF (y, t) E[ xx f (Yt ) y t y]

Var[ xx f (Yt )) y t y] (y, t) dy dt0

T

E[( xx f (Yt ) xxPF (y, t))2 y t y] (y, t) dy dt0

T

Bruno Dupire 53

The Geometry of Hedging

• In practice, determining the best hedge is not sufficient

Need to measure of residual risk

2

2

2

2

2 1hedging beforerisk initial

hedgingafter risk remaining1

X

XX

X

XH

HH

eperformanc hedging of Measure

:11and20for2

X

YH

hedgeable.not options Spread

hedgeable. optionsBasket

latilitysimilar vowith

,correlatedhighly &

.0:1 and If

.1:0or 1 If

2

2

YX

H

H

YX

X

Y

H-Squared Parabola vs Cube

Skewness Products

• Negative Skewness: fat tail to the left• Linked to UP Dispersion < Down Dispersion

n

ni

n

njj

jT

i

iT

n

i

n

jj

jT

i

iT

S

S

S

S

n

S

S

S

S

n

12/ 12/ 00

2/

1

2/

1 00

2/

1 DispersionDown

2/

1 Dispersion Up

Some products are based onUp Dispersion – Down Dispersion

Hedge with Components

• Decorrelated Case

• Good hedge with risk reversals on the components

Hedge with Components

• Correlated Case

• No hedge with components

BMW

Sample Mean of Best third

+

Sample Mean of Worst third

-2 x

Sample Mean of Middle third

Perfect Hedge for BMW, Correlation = 0% Short 6 Shares, Short 9 Puts at –K*, Long 9 Calls at K*

-3 -2 -1 0 1 2 3-6

-4

-2

0

2

4

6

Level

Pa

yo

ffComponent Hedge

Norm Cdf = 2/ 3

Norm Cdf = 1/ 3

K* = 0.4307

BMW with 30 stocks , Correlation = 0 Hedge with Puts and Calls using 120 strikes

R-squared = 80.7%, MC runs = 10,000

-1.5 -1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

1.5

Hedge

Ta

rge

t

BMW with 30 stocks , Correlation = 40% Hedge with Puts and Calls using 120 skrikes

R-squared = 5.8%, MC runs = 10,000

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Hedge

Ta

rge

t

Analysis

• Correlation shifts the returns, which affects the components hedge but not the target

• In the absence of hedge, it is a mistake to price the product with a calibrated model

• Implied individual skewness is irrelevant !

• It is a wrong way to play implied versus realized skewness

Conclusion

• Itô calculus can be extended to functionals of price paths

• Price difference between 2 models can be computed

• We get a variational calculus on volatility surfaces

• It leads to a strike/maturity decomposition of the volatility risk of the full portfolio

top related