general presentation uf

Post on 09-Jan-2017

4.948 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

NORIT XIGATM

Dead-end Ultrafiltrationin water treatment

2

1. Introduction2. Norit XIGA™ dead-end Ultrafiltration3. UF Process Modes4. Main UF parameters5. Large scale water treatment: examples6. Summary

ContentsContents

3

1. Introduction1. Introduction

Gradual decrease of global water sources Boost in the development new technology Water from non-conventional sources:

– WWTP effluent– Sea water

Application of membrane technology:– reverse osmosis (1960’s)– micro-, ultra- and nanofiltration (1980/90’s)

4

1. Introduction1. Introduction

MicroFiltration10 um – 100 nm

UltraFiltration100 - 10 nm

NanoFiltration10 - 1 nm

ReverseOsmosis< 1 nm

colloids virusescolourhardness pesticides saltswater

giardacryptobacteria

colour hardnesspesticidessaltswater

colloidsviruses

saltswater

colourhardnesspesticides salts

water

5

Dead-end filtration:advantages:

– simple process set-up– low energy consumption– low investment

disadvantages:– laminar flow– discontinuous concentrate discharge– risk of pore and membrane channel plugging– sensitivity to changes in the feed properties

2. Norit XIGA™ dead-end 2. Norit XIGA™ dead-end UltrafiltrationUltrafiltration

feed water

permeate

cake

6

2. Norit XIGA™ dead-end 2. Norit XIGA™ dead-end UltrafiltrationUltrafiltration

Cross-flow Filtration:advantages:

– turbulent flow– continuous concentrate discharge– control of cake-layer build-up

disadvantages:– more complex process layout– high(er) energy consumption– high(er) investment cost

feed water

permeate

cake

7

>Log 4 removal of viruses

Complete removal of suspended solids

Removal of micro-organisms:>Log 6 removal of bacteria

Partial removal dissolved matter (TOC, COD, BOD)through binding to suspended matter

2. Norit XIGA™ dead-end 2. Norit XIGA™ dead-end UltrafiltrationUltrafiltration

Cryptosporidium(2-3 µm)

Main skills UF:

8

8 inch X-FlowUF membrane

module (40 m2)

0.8 mm fibrespore size 20-25 nm

2. Norit XIGA™ dead-end 2. Norit XIGA™ dead-end UltrafiltrationUltrafiltration

Bypass tubes

9

2. Norit XIGA™ dead-end 2. Norit XIGA™ dead-end UltrafiltrationUltrafiltration

Membrane housing

Feed

Permeate

Membrane Module

Feed

Permeate

Bypass tubes

10

2. Norit XIGA™ dead-end 2. Norit XIGA™ dead-end UltrafiltrationUltrafiltration

Module 1 Module 2Inter-connector

Bypass tubes

11

2. Norit XIGA™ dead-end 2. Norit XIGA™ dead-end UltrafiltrationUltrafiltrationMain skills Norit XIGA™-concept:

Dead-end low energy consumption, simple design Horizontal small footprint, easy module handling 8 inch world standard for RO Bypass tubes improved fouling distribution between modules, reduced fouling tendency Fully automated In-situ cleaning of membranes operation

12

Filtration3. UF process modes3. UF process modes

13

Filtration: inside outsidemembran

e

feed

permeate

3. UF process modes3. UF process modes

14

Cake build-up

Pore blocking

BackWash

3. UF process modes3. UF process modes

15

Backwash: outside inside

concentrate

backwash

membrane

3. UF process modes3. UF process modes

16

Backwash3. UF process modes3. UF process modes

17

Adsorption

Chemically Enhanced Backwash

3. UF process modes3. UF process modes

18

Chemically Enhanced Backwash

3. UF process modes3. UF process modes

19

-250

-200

-150

-100

-50

0

50

100

time

flux

Filtration Filtration Filtration Filtration

BW BW CEB

3. UF process modes3. UF process modes

20

Single stage UF

100% 80-95%

5-20%

Feed

Concentrate

Permeate

Typical: Recovery 80-95%

3. UF process modes3. UF process modes

21

Dual stage UF

100%Feed

1° Conc.1° Permeate95-99,5%

2° Conc.0,5 - 5%

UF1

UF2

2° Permeate

Typical: Recovery 95–99,5%

3. UF process modes3. UF process modes

22

Flux: Yield per square meter membrane surface Ltr/m2.h or lmh

4. UF main parameters4. UF main parameters

TMP: Trans Membrane PressurePfeed – Pperm (bar)

Pf PpFeed

Permeate

Typical (filtration): 60 – 130 lmhTypical (backwash): 250 lmh

Typical (filtration): 0,2 – 0,8 barTypical (backwash): 1,0 – 2,0 bar

23

• Pressure Correction Factor = TMP (bar)• Temp. Corr. Factor (to ref. temp, mostly 20°C) =

impact water viscosity & “membrane effect” on TMPat different temperatures)

(Ltr/m2.h.bar). or (lmh/bar).

Permeability: Flux corrected for Pres. & Temp. (also normalised flux)

Example: Temperature impact on permeability:

If T=30°C Perm=152 lmh/bar

If T=20°C Perm=200 lmh/barIf T=5°C Perm=318 lmh/bar

Typical: 150 – 350 lmh/bar

4. UF main parameters4. UF main parameters

Flux = 100 lmhTMP = 0,5 bar

Pf Pp

24

minFiltration time: Duration of 1 filtration period

%Recovery: Average permeate flow Average feed flow

Backwash time: Duration of 1 backwash sec

CEB interval: Period between 2 CEB’s hrs

Typical: 15 – 60 min

Typical: 30-50 sec

Typical: 6 – 48 hrs

Typical: 80 - 95 %

4. UF main parameters4. UF main parameters

25

Permeability decrease through TMP increase

0

50

100

150

200

250

300

350

0 50 100 150 200

Time [minutes]

Perm

eabi

lity

[lmh/

bar]

0

0,5

1

1,5

2

TMP

[bar

]

Permeability TMP

4. UF main parameters4. UF main parameters

26

WWTP

Surface water

Borehole/Spring waterSeawaterWWTP effluent

Potable waterproduction

UF RO

5. Large scale water 5. Large scale water treatmenttreatment

27

Irrigation water

Process water

Potable water

Flux 70 - 100 lmhRecovery 80 - 90%

5a. Surface water5a. Surface water

28

5a. Surface water5a. Surface water

Purit, The NetherlandsProcess Water (120 m3/h)

Klazienaveen, The NetherlandsIrrigation Water (300 m3/h)

29

Potable Water

Flux 100 - 130 lmh Recovery 95 - 99%

5b. Borehole/Spring water5b. Borehole/Spring water

30

PWN Heemskerk, The Netherlands2900 m3/h

PWN Heemskerk, The Netherlandspilotplant 10 m3/h

5b. Potable water5b. Potable water

Keldgate, United Kingdom3700 m3/h

Clay Lane, United Kingdom (6700 m3/h)

31

SWRO pre-treatment for:

Process WaterPotable Water

Flux 80 - 100 lmh Recovery 80 - 90%

5c. Seawater5c. Seawater

32

UAE Potable water 450 m3/h

5c. Seawater5c. Seawater

33

From WWTP effluent to:Irrigation WaterProcess WaterGrey WaterPotable Water (indirect)

Flux 65 - 90 lmhRecovery 75 - 85%

5d. WWTP Effluent5d. WWTP Effluent

34

Windhoek, Namibië Potable water 850 m3/h

Baranco Seco, Canaries Process water 1000 m3/h

5d. WWTP Effluent5d. WWTP Effluent

35

Norit Dead-end XIGATM Ultrafiltration:

Large number of applications

Fully automated operation,easy operation

Compact design with small footprint, easy module loading and replacement

6. Summary6. Summary

Superb filtrate quality; complete removal of SS & micro-organismspartial removal of TOC, COD & BOD

36

top related