geochemical and hydrologic controls on abandoned coal mine discharge

Post on 16-May-2015

915 Views

Category:

Sports

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Jill Burrows Ph.D. Candidate, Lehigh University, “Geochemical and Hydrologic Controls on Abandoned Coal Mine Discharge” Water samples were collected from 23 Coal Mine Discharges (CMDs) in the summer and fall of 2012 in the anthracite coal region of Pennsylvania to evaluate the changes in geochemistry and hydrology over time by comparing the results to studies conducted on the same discharges in 1975, 1991, and 1999 by the U.S. Geological Survey. Geochemical modeling was used to establish a timeline for inorganic pyrite dissolution.

TRANSCRIPT

Geochemical and Hydrologic Controls on Mine Drainage: Anthracite Coal Fields, PA, 1975-2012

J.E. Burrows1, S.C. Peters1, and C.A. Cravotta, III2

1 Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA 18015

2 USGS, U.S. Geological Survey, Pennsylvania Water Science Center, New Cumberland, PA 17070

Exposure to oxygen and moisture produces Fe2+, SO4, and acid:

FeS2 + 14Fe3+ + 8H2O 15Fe2+ +2SO42- +16H+ (1)

Fe+3 Ferric Iron

Fe+2 Ferrous Iron

AerobicHigh pH

AnaerobicLow pH

Exposure to oxygen and moisture produces Fe2+, SO4, and acid:

FeS2 + 14Fe3+ + 8H2O 15Fe2+ +2SO42- +16H+ (1)

Fe2+ is transformed through the following reactions:

Fe2+ + 0.25O2 + H+ Fe3+ + 0.5H2O (2)

Fe3+ + 3H2O Fe(OH)3 + 3H+ (3)

Fe2+ + 0.25O2 + 2.5 H2O Fe(OH)3 + 2H+ (4)

pH

Site 2

Site 3

Higher pH results in the precipitation

of Fe

Lee et al, 2002, Appl. Geochem.

Site 1

Wood et al., 1999, Quat. Jour. Eng. Geo.

Wood et al., 1999, Quat. Jour. Eng. Geo.

Scranton

Wilkes-Barre

Bethlehem

● Sampling Sites■ Coal Mining Operations Cities

Scranton

Wilkes-Barre

Bethlehem

● Sampling Sites■ Coal Mining Operations Cities

1975 1991 1999 2012

Growitz et al., 1985, USGS Report

Wood, 1991, USGS Report

Cravotta, 2008, Appl. Geochem.

This Study

2/9/99 7/9/99 12/6/99 5/4/00 10/1/002.5

3.5

4.5

5.5

6.5

7.5

pHAskam shaft

Sampling Date (M/D/Y)

pH

2.5

3.5

4.5

5.5

6.5

7.5

pHHoney pot Outfall

pH

020406080

100120140160180 Fe

Honeypot outfall

Fe

(m

g/L

)

2.5

3.5

4.5

5.5

6.5

7.5

pHValley View

pH

020406080

100120140160180 Fe

Valley View

Fe

(m

g/L

)

2/9/99 7/9/99 12/6/99 5/4/00 10/1/000

20406080

100120140160180 Fe

Askam shaft

Sampling Date (M/D/Y)

Fe

(m

g/L

)

1975 1985 1995 20050

10

20

30

40

50

60

Sampling Year

Fe

(m

g/L

)

1975 1985 1995 20050

100

200

300

400

500

600

700

Sampling Year

SO

4 (

mg

/L)

pH SO4Fe

Median

Std Deviation Std Deviation

Median

Std Deviation

Median

pH SO4Fe

A) B) C)

D) E) F)

MeanMean

Mean

0

500

1000

1500

2000

2500

3000

SO

4 (

mg

/L)

1975 1985 1995 20050

1

2

3

4

5

6

7

Sampling Year

pH

0

20

40

60

80

100

120

140

160

180

200

Fe

(m

g/L

)

2.5

3.5

4.5

5.5

6.5

7.5

pH

1975 1985 1995 20050

10

20

30

40

50

60

Sampling Year

Fe

(m

g/L

)

1975 1985 1995 20050

100

200

300

400

500

600

700

Sampling Year

SO

4 (

mg

/L)

pH SO4Fe

Median

Std Deviation Std Deviation

Median

Std Deviation

Median

pH SO4Fe

A) B) C)

D) E) F)

MeanMean

Mean

0

500

1000

1500

2000

2500

3000

SO

4 (

mg

/L)

1975 1985 1995 20050

1

2

3

4

5

6

7

Sampling Year

pH

0

20

40

60

80

100

120

140

160

180

200

Fe

(m

g/L

)

2.5

3.5

4.5

5.5

6.5

7.5

pH

1975 1985 1995 20050

10

20

30

40

50

60

Sampling Year

Fe

(m

g/L

)

1975 1985 1995 20050

100

200

300

400

500

600

700

Sampling Year

SO

4 (

mg

/L)

pH SO4Fe

Median

Std Deviation Std Deviation

Median

Std Deviation

Median

pH SO4Fe

A) B) C)

D) E) F)

MeanMean

Mean

0

500

1000

1500

2000

2500

3000

SO

4 (

mg

/L)

1975 1985 1995 20050

1

2

3

4

5

6

7

Sampling Year

pH

0

20

40

60

80

100

120

140

160

180

200

Fe

(m

g/L

)

2.5

3.5

4.5

5.5

6.5

7.5

pH

1975 1985 1995 20050

10

20

30

40

50

60

Sampling Year

Fe

(m

g/L

)

1975 1985 1995 20050

100

200

300

400

500

600

700

Sampling Year

SO

4 (

mg

/L)

pH SO4Fe

Median

Std Deviation Std Deviation

Median

Std Deviation

Median

pH SO4Fe

A) B) C)

D) E) F)

MeanMean

Mean

0

500

1000

1500

2000

2500

3000

SO

4 (

mg

/L)

1975 1985 1995 20050

1

2

3

4

5

6

7

Sampling Year

pH

0

20

40

60

80

100

120

140

160

180

200

Fe

(m

g/L

)

2.5

3.5

4.5

5.5

6.5

7.5

pH

  Time Interval  

Parameter ’75-‘91 ’91-‘99 ’99-‘12 ’75-‘12

Fe (mg/L) 0.080 0.005 0.081 0.165

SO4 (mg/L) 0.600 <0.001 0.091 0.002

pH <0.001 <0.001 0.046 0.008

Non-parametric Matched Pairs Significance Level p<0.05

1975 1985 1995 20050

10

20

30

40

50

60

Sampling Year

Fe

(m

g/L

)

1975 1985 1995 20050

100

200

300

400

500

600

700

Sampling Year

SO

4 (

mg

/L)

pH SO4Fe

Median

Std Deviation Std Deviation

Median

Std Deviation

Median

pH SO4Fe

A) B) C)

D) E) F)

MeanMean

Mean

0

500

1000

1500

2000

2500

3000

SO

4 (

mg

/L)

1975 1985 1995 20050

1

2

3

4

5

6

7

Sampling Year

pH

0

20

40

60

80

100

120

140

160

180

200

Fe

(m

g/L

)

2.5

3.5

4.5

5.5

6.5

7.5

pH

EPCAMR John Welsh

Flux = Concentration x Discharge

1975 1985 1995 20050

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Sampling Year

Fe

flu

x (

mg

/s)

1975 1985 1995 20050

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sampling Year

Dis

ch

arg

e (

m3

/s)

1975 1985 1995 20050

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sampling Year

SO

4 F

lux

(m

g/s

)Median

Std Deviation

MedianMedian

Std DeviationStd Deviation

Fe Flux

Fe Flux SO4 Flux

SO4 FluxDischarge

Discharge

A) B) C)

D) E) F)

MeanMean

Mean

0

0.5

1

1.5

2

2.5

3D

isc

ha

rge

(m

3/s

)

0

0.5

1

1.5

2

2.5

SO

4 F

lux

(m

g/s

)

0

0.05

0.1

0.15

0.2

0.25

Fe

Flu

x (

mg

/s)

Demchak et al., 2004, Jour. Env. Qual.

Above: exposed rock surfaces facilitate O2 transport and continual pyrite dissolution, alkalinity consumption

Demchak et al., 2004, Jour. Env. Qual.

Demchak et al., 2004, Jour. Env. Qual.

Above: exposed rock surfaces facilitate O2 transport and continual pyrite dissolution, alkalinity consumption

Below: groundwater inputs with low dissolved O2, resulting in a decrease of pyrite oxidation

0

20

40

60

80

100

120

140

160

180

200

Fe

(m

g/)

pH SO4Fe

A) B) C)

2.5

3.5

4.5

5.5

6.5

7.5

pH

1975 1985 1995 20050.5

1.5

2.5

3.5

4.5

5.5

6.5

Sampling Year

pH

Mean

Std Dev

1975 1985 1995 20057

12

17

22

27

32

37

42

47

52

Sampling Year

Fe

(m

g/L

)

Mean

Std Dev

Mean

1975 1985 1995 20050

100

200

300

400

500

600

700

800

Sampling Year

SO

4(m

g/L

)

0

500

1000

1500

2000

2500

3000

SO

4 (

mg

/L)

Mean

Mean

Std Dev

Above: blackBelow: gray

Sampling YearDrainage

Type‘75-’91 ‘91-’99 ‘99-’12 ‘75-’12

Above

pH 0.075 0.106 0.204 0.108

Fe 0.867 0.089 0.402 0.799

SO4 0.611 0.050 0.866 0.402

Below

pH 0.003 0.004 0.099 0.043

Fe 0.045 0.007 0.091 0.028

SO4 0.289 0.009 0.084 0.004

Non-parametric Matched Pairs Significance Level p<0.05

Sampling YearDrainage

Type‘75-’91 ‘91-’99 ‘99-’12 ‘75-’12

Above

pH 0.075 0.106 0.204 0.108

Fe 0.867 0.089 0.402 0.799

SO4 0.611 0.050 0.866 0.402

Below

pH 0.003 0.004 0.099 0.043

Fe 0.045 0.007 0.091 0.028

SO4 0.289 0.009 0.084 0.004

Non-parametric Matched Pairs Significance Level p<0.05

0

20

40

60

80

100

120

140

160

180

200

Fe

(m

g/)

pH SO4Fe

A) B) C)

2.5

3.5

4.5

5.5

6.5

7.5

pH

1975 1985 1995 20050.5

1.5

2.5

3.5

4.5

5.5

6.5

Sampling Year

pH

Mean

Std Dev

1975 1985 1995 20057

12

17

22

27

32

37

42

47

52

Sampling Year

Fe

(m

g/L

)

Mean

Std Dev

Mean

1975 1985 1995 20050

100

200

300

400

500

600

700

800

Sampling Year

SO

4(m

g/L

)

0

500

1000

1500

2000

2500

3000

SO

4 (

mg

/L)

Mean

Mean

Std Dev

Above: blackBelow: gray

Exposure to oxygen and moisture produces Fe2+, SO4, and acid:

FeS2 + 14Fe3+ + 8H2O 15Fe2+ +2SO42- +16H+ (1)

Fe2+ is transformed through the following reactions:

Fe2+ + 0.25O2 + H+ Fe3+ + 0.5H2O (2)

Fe3+ + 3H2O Fe(OH)3 + 3H+ (3)

Fe2+ + 0.25O2 + 2.5 H2O Fe(OH)3 + 2H+ (4)

0 20 40 60 80 100 1200

0.05

0.1

0.15

0.2

0.25

Dissolved Oxygen (% Saturation)

Re

lati

ve

fre

qu

en

cy

0 20 40 60 80 100 1200

0.05

0.1

0.15

0.2

0.25

Dissolved Oxygen (% Saturation)R

ela

tiv

e f

req

ue

nc

y

Below-Drainage Above-Drainage

Below-Drainage Above-Drainage

0 20 40 60 80 100 120 1400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Alkalinity (mg/L CaCO3)

Re

lati

ve

fre

qu

en

cy

0 20 40 60 80 100 120 1400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Alkalinity (mg/L CaCO3)

Re

lati

ve

fre

qu

en

cy

0

20

40

60

80

100

120

140

160

180

200

Fe

(m

g/)

pH SO4Fe

A) B) C)

Above: blackBelow: gray

2.5

3.5

4.5

5.5

6.5

7.5

pH

1975 1985 1995 20050.5

1.5

2.5

3.5

4.5

5.5

6.5

Sampling Year

pH

Mean

Std Dev

1975 1985 1995 20057

12

17

22

27

32

37

42

47

52

Sampling Year

Fe

(m

g/L

)

Mean

Std Dev

Mean

1975 1985 1995 20050

100

200

300

400

500

600

700

800

Sampling Year

SO

4(m

g/L

)

0

500

1000

1500

2000

2500

3000

SO

4 (

mg

/L)

Mean

Mean

Std Dev

0 1 2 3 4 5 6 7 80

0.5

1

1.5

2

2.5

3

3.5

4

S (moles)

Fe

(m

ole

s)

Pyrite (2:1)

Samples (2.3:1)

Molar Ratio S:Fe

2 3 4 5 6 7 8 9 100

2

4

6

8

10

12

14

16

pH

-Lo

g A

cti

vit

y

2 3 4 5 6 7 8 9 100

2

4

6

8

10

12

14

16

Fe tot 1999

Fe(III)1999

Fe tot 2012

Fe(III)2012

pH

-Lo

g A

cti

vit

y

2 3 4 5 6 7 8 9 100

2

4

6

8

10

12

14

16

Fe tot 1999

Fe(III)1999

Fe tot 2012

Fe(III)2012

pH

-Lo

g A

cti

vit

y

Goethite

Jarosite

Schwertmannite

Ferrihydrite

2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

pH

-Lo

g A

cti

vit

y F

e (

III)

Jarosite

Schwertmannite

Ferrihydrite

2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

Fe tot 1999

Fe(III)1999

Fe tot 2012

Fe(III)2012

pH

-Lo

g A

cti

vit

y

Jarosite

Schwertmannite

Ferrihydrite

1 -

.5 -

0 -

-.5 -Troilite

FerrihydriteJarosite

Schwertmannite

FeSO4 (aq)

Pyrite

Fe++

Fe3+

Fe(OH)++Fe(OH)2

+

FeOH+

FeOFe++

2 3 4 5 6 7 8 9 10 pH

I I I I I I I

Eh

(V)

Conclusions

• Differences in pH, Fe, and SO4 were significant (p<0.05) for below-drainage mines

• Above-drainage discharges did not see any significant changes

• Fe(II) is the dominant Fe species, and transformation to Fe(III) may be limited by O2 transport.

• Saturation of Fe(III) precipitates varies with pH and Fe and SO4 concentrations: increasing pH and decreasing concentrations of Fe and SO4 limit the precipitation of K-jarosite and schwertmannite and favor precipitation of Fe(III) oxides.

Thank you!

• EPCAMR• Earth Conservancy• PA DEP• PA GIS and Tax

Assessors Offices• LU Environmental

Initiative

• LU EES Department• Kayla Virgone• Joe Solly• Kate Semmens• Paul Henry• George Yasko

References• Pine Knot Tunnel Discharge image http://www.undergroundminers.com/oakhill.html

• Cravotta, C.A., III, 2008a, Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations, Appl. Geochem., 23, 166-202.

• Cravotta, C.A., III, 2008b, Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: Geochemical controls on constituent concentration, Appl. Geochem, 23, 203-226.

• Lee, G., Bigham, J.M., Faure, G., 2002, Removal of trace metals by coprecipitation with Fe, Al, and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee: Appl. Geochem., 17, 569-581.

• Growitz, D.J., Reed, L.A., Bear, M.M., 1985, Reconnaissance of mine drainage in the coal fields of Eastern Pennsylvania, U.S. Geological Society Water-Resources Investigations Report, 83-4274.

• Wood, C.R., 1991, Water quality of the large discharges from mines in the anthracite region of Eastern Pennsylvania, U.S. Geological Society Water-Resources Investigations Report, 95-4243.

• Wood, S.C., Younger, P.L., Robins, N.S., 1999, Long-term changes in the quality of polluted minewater discharges from abandoned underground coal workings in Scotland, Quat. J. of Eng. Geo., 32, 69-79.

Discharges Sampled

• Coalbrook Mine (lower Wilson Creek Shaft)

• Gravity Slope (Peckville Shaft)• Old Forge Borehole• Duryea Breech Seep• Butler Mine tunnel (Pittston

Water Level Tunnel)• South Wilkes-Barre Boreholes • Buttonwood Outfall• Beaver Meadow Outfall• Oneida Tunnel• Scott Ridge Mine Tunnel• Cameron Mine Airshaft• Cameron Mine Drift

• Silverbrook Mine• Colket Mine• Tracy Airhole• Rowe Tunnel Discharge• Valley View Tunnel• Jermyn Mine• Honeypot Outfall• Maysville Mine Borehole at

Ranshaw• Henry Clay Stirling Mine Pump• Big Mtn Mine no. 1 Slope• Markson Columnway• Porter Tunnel near Tower City

top related