how do neurons deal with uncertainty? sophie deneve group for neural theory ecole normale...

Post on 27-Dec-2015

213 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

How do neurons deal with uncertainty?

Sophie DeneveGroup for Neural Theory

Ecole Normale SupérieureParis, France.

Dealing with uncertainties: two approaches

State of the word or body

Neural representation

Behavioral response

Sensor noise

Neural noise

Effector noise

Efficient encoding(information maximization)

Efficient decoding(ideal observer)

Tuning curves, neural code

Signal processing

ss x

nr f s

x Sensory variable

ˆ ˆy g x Behavioral estimate

Velocity perception as bayesian inference:Weiss, Simoncelli and Adelson, 2002

Bayesian perception and action

Infering 3D structures from 2D images. Knill and Richards, 1996

Bayesian integration for optimal motor strategies.Kording and Wolpert, 2004.Multisensory integration.

Van Beers, Sittig and Gon, 1999, Ernst and Banks 2002

1| |P V S P S V P V

Z

Dealing with uncertainties: two approaches

Internal beliefs

Behavioral strategies

State of the word or body

Inference Prediction

decisions explorations

PredictionLikelihood

Maximize Utility/Reward

Models, Probabilities, priors….

Bayesian models

max , |x

reward y x p x s

x

ss x

Sensory variable

Posterior probabilities

| ,r f p x s priors

Two parts of the lecture

• Part 1: How can variables encoded by population of noisy neurons be estimated? How can they be combined?

• Part 2: Are probability distributions and belief states encoded in neurons or neural populations?

Population coding

Population coding

Georgopoulos 1986

Population Codes

Tuning Curves Average pattern of activity

-100 0 1000

20

40

60

80

100

Direction (deg)

Act

ivit

y

-100 0 1000

20

40

60

80

100

Preferred Direction (deg)

Act

ivit

y s?

i i ir f x x f x

Poisson Variability in Cortex

Trial 1

Trial 2

Trial 3

Trial 4

Mean Spike Count

Variance of Spike Count

Noisy population Codes

Pattern of activity (r)

-100 0 1000

20

40

60

80

100

Preferred Direction (deg)

Act

ivit

y s?X?

exp

!

k

i ii

f x f xp r k

k

Poisson noise:

Independent: | |i

i

p x p r xr

Population Vector

x

P

riPi-100 0 100

0

20

40

60

80

100

Preferred Direction (deg)

Act

ivit

y

s?X?

i ii

P r P

-45 0 450

20

40

60

80

100

Act

ivit

y

Maximum likelihoodˆpvx

pv

Preferred Direction of motion (deg)

22 1

ˆpv pvx xI x

ˆ anglepv i ii

x r P

Fisher information

Maximum performance for an unbiased estimator

-45 0 450

20

40

60

80

100

Act

ivit

y

Maximum likelihoodˆMLx

ML

Preferred Direction of motion (deg)

2 1ML I x

ˆ arg max |MLx p xx

r

i i

i

xf

xfxI

2'

Fisher Information

• For one neuron with Poisson noise

• For n independent neurons :

The more neurons, the better! Small variance is good!

Large slope is good!

xf

xfxI

i

ii

2'

Derivative of the tuning curve

Tuning curve (mean activity)

-100 0 1000

20

40

60

80

100

Direction (deg)

Act

ivit

y

x

Variance of the maximum likelihood estimate

22'2

1ˆML ML

i

i i

x xf

f

• Population of neuron with independent Poisson noise:

-45 0 450

20

40

60

80

100

Act

ivit

y

Recurrent network

Preferred Direction of motion (deg)

-45 0 450

20

40

60

80

100

Act

ivit

y

Recurrent networkˆrx

r

Preferred Direction of motion (deg)

r ML

If the network is a line attractor, and if

We have:

1 Wdt

fNetwork parameters

Covariance of the neural noise

Derivative of the tuning curve

Line attractor networks

-45 0 450

20

40

60

80

100

Act

ivit

y

Preferred Direction of motion (deg)

ˆrx

-45 0 450

20

40

60

80

100

Act

ivit

y

Preferred Direction of motion (deg)

ˆrx

-45 0 450

20

40

60

80

100

Act

ivit

yPreferred Direction of motion (deg)

ˆrx

Neuron 1

Neu

ron

2

Neuro

n 3

Line attractor networks

-45 0 450

20

40

60

80

100

Act

ivit

y

Preferred Direction of motion (deg)

-45 0 450

20

40

60

80

100

Act

ivit

yPreferred Direction of motion (deg)

-45 0 450

20

40

60

80

100

Act

ivit

y

Preferred Direction of motion (deg)

Neuron 1

Neu

ron

2

Neuro

n 3

Line attractor networks

Neuron 1

Neu

ron

2

Neuro

n 3

-45 0 450

20

40

60

80

100

Line attractor networks

Neuron 1

Neu

ron

2

Neuro

n 3

-45 0 450

20

40

60

80

100

-45 0 450

20

40

60

80

100

Act

ivit

y

Preferred Direction of motion (deg)

ˆrx

Line attractor networks

Neuron 1

Neu

ron

2

Neuro

n 3

Line attractor networks

Neuron 1

Neu

ron

2

Neuro

n 3

Line attractor networks

Neuron 1

Neu

ron

2

Neuro

n 3

-45 0 450

20

40

60

80

100

Act

ivit

y

Preferred Direction of motion (deg)

ˆrxˆ r

Line attractor networks

Neuron 1

Neu

ron

2

Neuro

n 3

Covariance of neural noise

Shape of stable manifold

Direction of projection

Line attractor networks

Neuron 1

Neu

ron

2

Neuro

n 3

Covariance of neural noise

Shape of stable manifold

Direction of projection

Line attractor networks

WT

dt

fNeuron 1

Neu

ron

2

Neuro

n 3

Covariance of neural noise

Shape of stable manifold

Direction of projection

1 =

Cue integration

Visual capture: The ventriloquism effect

Multi-sensory integration

Pro

babi

lity

Position of the object, x^ ^

( | ) ( | )( | , ) vis aud

vis aud

p x p xp x

N

r rr r

Combining cues from several modalities

( / )visp x r( / )audp x r

( / , )vis audp x r r

Pro

babi

lity

Position of the object, x^ ^

Combining cues from several modalities: Gaussiab distributions

ˆvisx

ˆaudx

visaud

Pro

babi

lity

Position of the object, x^ ^

Combining cues from several modalities

ˆvisx

ˆaudxˆbix

ˆ ˆ ˆ ˆ ˆaud visbi vis aud vis vis aud aud

vis aud vis aud

x x x w x w x

visaud

Visual xvis

Auditoryxaud

Bimodal

Visual xvis

Auditoryxaud

Bimodal

Visual xvis

Auditoryxaud

Bimodal

Visual more reliable: Visual capture

Auditory more reliable: Auditory capture:

Analogy with the center-of-mass

Ernst and Banks, 2002

From: Banks et al, Nature, 2002

0 67 133 2000

0.05

0.1

0.15

0.2

Th

resh

old

(S

TD

)Visual noise level (%)

Measured bimodal STD

Predicted by the optimal model

0 67 133 2000

0.2

0.4

0.6

0.8

1

Vis

ua

l we

igh

t

Visual noise level (%)

Unimodal visual STD

Unimodal Tactile STD

Measured visual weight

Visual widthxv

Haptic widthxt

Bimodal width

Prior, likelihood and posterior

-45 0 450

20

40

60

80

100

Preferred position (x)

Neu

ral r

espo

nse

|p xrLikelihood:

p xPrior:

||

p x p xp x

p

rr

r

Posterior (Bayes Theorem)

Prior, likelihood and posterior

-45 0 450

20

40

60

80

100

Preferred position (x)

Neu

ral r

espo

nse

| | ir

i ii i

p x p r x K f x r

Flat prior

| ' ir

ii

p x K f x r

log | '' log i ii

p x K f x r r

Gain as encoding certainty

-45 0 450

20

40

60

80

100

Act

ivit

y

visML

Preferred Direction of motion (deg)

ˆvisMLx

1ML

x

| visp x rVisual input:

-45 0 450

20

40

60

80

100

Act

ivit

y ˆaudMLx

Preferred Direction of motion (deg)

audML

2ML

x

| audp x rAuditory input:

1 2ML

x

| bip x r

Product

ˆvisMLx

ˆvisaudx

ˆbiMLx

Act

ivit

y

-45 0 450

10

20

Preferred eye-centered position-45 0 45

0

10

20

Preferred eye position

Act

ivit

y

-45 0 450

10

20

Act

ivit

y

Preferred head-centered position

Eye position

Eye-centered position

Head-centered position

Visual layer Eye position layer

Auditory layer

Integrating several noisy population code

-45 0 450

10

20

Preferred eye-centered position

Act

ivit

y

-45 0 450

10

20

Preferred eye position

Act

ivit

y

-45 0 450

10

20

Act

ivit

y

Preferred head-centered position

Maximum Likelihood

Eye position

Eye-centered position

Head-centered position

Visual layer

Auditory layer

Eye position layer

-45 0 450

10

20

Preferred eye-centered position

Act

ivit

y

-45 0 450

10

20

Preferred eye position

Act

ivit

y

-45 0 450

10

20

Act

ivit

y

Preferred head-centered position

Eye position

Eye-centered position

Head-centered position

Visual layer

Auditory layer

Eye position layer

Multidirectional sensory prediction

-45 0 450

10

20

Preferred eye-centered position

Act

ivit

y

-45 0 450

10

20

Preferred eye position

Act

ivit

y

-45 0 450

10

20

Act

ivit

y

Preferred head-centered position

Visual layer

Auditory layer

Eye position layer

tac vis eyex x x

eyexvisx

How do we do coordinate transform?

-45 0 450

10

20

Preferred eye-centered position

Act

ivit

y

-45 0 450

10

20

Preferred eye position

Act

ivit

y

-45 0 450

10

20

Act

ivit

y

Preferred head-centered position

Visual layer

Auditory layer

Eye position layer

+

Not Like This!

-45 0 450

10

20

Preferred eye-centered position-45 0 45

0

10

20

Preferred eye position

Act

ivit

y

-45 0 450

10

20

Act

ivit

y

Preferred head-centered position

Visual layer

Auditory layer

Eye position layer

Look-up table

Look up table.

-45 0 450

10

20

Preferred eye-centered position-45 0 45

0

10

20

Preferred eye position

Act

ivit

y

-45 0 450

10

20

Act

ivit

y

Preferred head-centered position

Visual layer

Auditory layer

Eye position layer

Radial basis function map

Radial basis function mapIterative (IBF)

Bimodal visuo-tactile input

Visual layer Eye position layer

Auditory layer

Neuron 1

Neu

ron

2

Neuro

n 3

Bimodal visuo-tactile input

Neuron 1

Neu

ron

2

Neuro

n 3

Visual layer Eye position layer

Auditory layer

ˆvisx ˆeyex

audx

Bimodal visuo-tactile input, weak tactile input

Visual layer Eye position layer

Auditory layer

Neuron 1

Neu

ron

2

Neuro

n 3

Bimodal visuo-tactile input

Neuron 1

Neu

ron

2

Neuro

n 3

Visual layer Eye position layer

Auditory layer

ˆvisx ˆeyex

audx

Unimodal visual input

Visual layer Eye position layer

Auditory layer

Neuron 1

Neu

ron

2

Neuro

n 3

Performance: The variance of the estimates are less than 4% worse than variance of the best (bayesian) estimator.

Result: IBF is an optimal bayesian estimator

ˆ ˆ ˆ ˆbi vis vis aud aud eyex w x w x x

visx eyex^

ˆ ˆ ˆ ˆbi vis vis aud aud eyex w x w x x

r ML

ˆaudx

From: Banks et al, Nature, 2002 Visual layer Eye position layer

Tactile layer

0 67 133 2000

0.05

0.1

0.15

0.2

Th

resh

old

(S

TD

)Visual noise level (%)

Measured bimodal STD

Predicted by the optimal model

0 67 133 2000

0.2

0.4

0.6

0.8

1

Vis

ua

l we

igh

t

Visual noise level (%)

Unimodal visual STD

Unimodal Tactile STD

Ernst and Banks, 2002

From: Banks et al, Nature, 2002

Measured visual weight

-45 0 450

20

40

60

80

100

Act

ivit

y

Why does it work?Reason 1: Line attractor networks work for different gains

ˆMLx

Preferred Direction of motion (deg)

G=Gain

xRPx

x /maxargˆ

22 '2

1ML

i

i i

G f

Gf

22 1MLML G

G

ML

WT

dt

fNeuron 1

Neu

ron

2

Neuro

n 3

1 =

-45 0 450

20

40

60

80

100

Act

ivit

y

Preferred Direction of motion (deg)

22 1MLr G

Why does it work? Reason 2: For independent Poisson noise, doing sum is

equivalent to multiplying the posteriors

-45 0 450

20

40

60

80

100

Act

ivit

y

visML

Preferred Direction of motion (deg)

ˆvisMLx

1ML

x

| visp x rVisual input:

-45 0 450

20

40

60

80

100

Act

ivit

y ˆaudMLx

Preferred Direction of motion (deg)

audML

2ML

x

| audp x rAuditory input:

1 2ML

x

| bip x r

Product

ˆvisMLx

ˆvisaudx

ˆbiMLx

sum-45 0 45

0

40

80

120

160

200

Act

ivit

y

biML

Preferred Direction of motion (deg)

ˆbiMLx

Generalization: Implicit probabilistic encoding

• Linear combinations correspond to optimal cue integration as long as the distribution of neural noise belong to the exponential family:

We have

Beck, Latham and Pouget, 2007

| exp .p x Z xr r h r

1 2 1 2

1| | |p x p x p x

Z r r r r

Structure of the iterative basis function network.

???Multi-sensory Representation.

Receptive fields in different modalities are roughly aligned in space.

Visual and tactile receptive fields in VIP:

Is multi-sensory integration simply realized by the convergence of all sensory inputs on a common spatial map?

Frame of reference of a multi-sensory cell’s receptive field: Sensory alignment hypothesis.

Model prediction: partially shifting receptive fields.

Duhamel et al, 1997, 2001

The modality dominance influence the receptive field shift.

Visual dominant: Tactile dominant:

Estimate

Visual estimate Tactile estimate

Estimate

rx

(Avillac et al, 2001)

Visual and tactile receptive fields of a VIP cell

VIP

Duhamel et al, 1997Avillac et al, 2001

LIPSC

Jay and Sparks, 1986Stricanne et al, 1995

Shift Ratio as a function of eye-centered dominance

0

0.5

1

1 0.52 0.254Eye-centered dominance

Shi

ft R

atio

Visual input

0

0.5

1

1Eye-centered dominance (confidence given to the visual modality)

Shi

ft R

atio

Tactile (auditory) input

Visual input

Head-centered

PMv

Graziano and Gross, 1998

Taking time into account

• Inference and predictions need to take place on short time scale.

• Events start and end unpredictably, objects move...

• We need to estimate the states of relevant variable on-line. No time to converge to an attractor.

• Spike per spike computations (and coding?)

Explicit encoding of probabilities by population codes

|i ir p x s f x dx

| i ii

p x s r f x

Convolutional codes (Zemel, Dayan, Pouget, Sahani)

Basis function coding (Andersen, Barber, Eliasmith)

Time? Inference is hard.

Experimental evidence is lacking.

It is not enough to store past input to combine it with new input.

Dupont Durand Smith

P(guilty)

It is not enough to store past input to combine it with new input.

Dupont Durand Smith

P(guilty)

It is not enough to store past input to combine it with new input.

Dupont Durand Smith

P(guilty)

It is not enough to store past input to combine it with new input.

P(guilty)

Dupont Durand Smith

It is not enough to store past input to combine it with new input.

P(guilty)

Dupont Durand Smith

It is not enough to store past input to combine it with new input.

P(guilty)

Dupont Durand Smith

It is not enough to store past input to combine it with new input.

P(guilty)

Dupont Durand Smith

It is not enough to store past input to combine it with new input.

P(search)

London Paris

It is not enough to store past input to combine it with new input.

P(search)

London Paris

It is not enough to store past input to combine it with new input.

P(search)

London Paris

Hidden Markov Model

1ts ts 1ts

txdttx dttx Hidden variable

Observations

cause

0 0

1| | | |

t

t dt t dt t dt t dt t dt t t tx

p x s p s x p x x p x sZ

Inference can be performed recurrently:

Observations are spikes:

| |tt t i t

i

p s x p s x 1 is

ii

f x dtZ

0 (no spike) or 1 (spike)

Hidden Markov Model

1ts ts 1ts

txdttx dttx Hidden variable

Observations

cause

1 or 0tx

0 or 1| =1 or 0t t dtp x x

1 , 0i if f

stimulus present/absent

Probability that stimulus appears/disappears

Firing rate of neuron i given that stimulus is present/absent

Example 1: Detecting the presence of a stimulus

?

Hidden Markov Model

1ts ts 1ts

txdttx dttx Hidden variable

Observations

cause

tx

|t t dtp x x

1|it t t ip s x f x x

Position, speed and acceleration of the arm

Noisy dynamics of the arm.

Tuning curve of neuron i

Example 2: Tracking the state of the arm during movement

0px ˆ 1px ˆ 2px

Evidence for “explicit” encoding of probability in neural activity: Shadlen et al

Gold and Shadlen, 2004

Rightward motion: saccade right

Leftward motion: saccade left

Evidence for “explicit” encoding of probability in neural activity: Shadlen et al

Medio-temporal cortex (MT): Lateral intra-parietal cortex (LIP)

Firi

ng r

ate

Time

BRAIN

Preferreddirection

Non-preferreddirection

Increase with coherence

Evidence for “explicit” encoding of probability in neural activity: Shadlen et al

Medio-temporal cortex (MT):Lateral intra-parietal cortex (LIP)

Firi

ng r

ate

Time

1ts ts 1ts

txdttx dttx

0if

0| tp x s 1if

LIP/MT model (sequential probability test)

logt

p leftL

p right

Response left>response right

Response right>response left

Saccade right

Saccade Left

logt

p rightL

p left

LIP/MT model (sequential probability test)

Left>Right

Right>Left

Saccade right

Saccade Left

logt

p leftL

p right

logt

p rightL

p left

LIP/MT model (sequential probability test)

Left>Right

Right>Left

Saccade right

Saccade Left

logt

p leftL

p right

logt

p rightL

p left

MTLIP

Left>Right

Right>Left

Saccade right

Saccade Left

logt

p leftL

p right

logt

p rightL

p left

LIP/MT model (sequential probability test)

LIP/MT model (sequential probability test)

Left>Right

Right>Left

Saccade right

Saccade Left

logt

p leftL

p right

logt

p rightL

p left

LIP/MT model (sequential probability test)

Left>Right

Right>Left

Saccade right

Saccade Left

logt

p leftL

p right

logt

p rightL

p left

LIP/MT model (sequential probability test)

Left>Right

Right>Left

Saccade right

Saccade Left

logt

p leftL

p right

logt

p rightL

p left

LIP/MT model (sequential probability test)

Left>Right

Right>Left

Saccade right

Saccade Left

logt

p leftL

p right

logt

p rightL

p left

LIP/MT model (sequential probability test)

Left>Right

Right>Left

Saccade right

Saccade Left

logt

p leftL

p right

logt

p rightL

p left

Evidence for “explicit” encoding of probability in neural activity: Shadlen et al

Go to the log (replace products by sums):

0 0

1| | |t dt t dt tp x s p s x p x s

Z

Assume the direction of motion never change during the trial:

it dt t i t

i

L L w s In the limit of small temporal discretization step, dt:

1ii t

i

Lw s

dt

OR

0

0

1|log

0 |t dt

tt dt

p x sL

p x s

Firing rate when x is 1

Firing rate when x is 0

1

log0

i

i

f

f

?Bayesian temporal integration in single neurons

txt dtx t dtx

1ts ts 1ts

Bayesian temporal integration in single neurons

?

0if 1if

11| 0on t dt tr p x x

dt

10 | 1off t dt tr p x x

dt

Rate of switching on:

Rate of switching off:

txt dtx t dtx

1ts ts 1ts

Bayesian temporal integration in single neurons

?

ionq i

offq

onr

offr

Rate of switching on:

Rate of switching off:

1 1L L ion off i t

i

Lr e r e w s

dt

?

Time

tL

Leak Synaptic input

' it i t

i

LL w s

t

Bayesian integration corresponds to leaky synaptic integration.

0 100 200 300 400-10

-5

0

5

0 100 200 300 400-10

-5

0

5

Time

Log

odd

ratio

Log

odd

ratio

A.

Time

B.

Accumulation of evidence results in linear ramps followed by a saturation.

Slowly dynamics Fast dynamics

If the stimulus varies very slowly, the neuron is an integrator

For faster stimuli, this integration is leaky

Importance of using the right temporal statistics

Left>Right

Right>Left

Motion right

Motion left

Motion right

Motion left

Generalization to multiple states

0px ˆ 1px ˆ 2px

exp tkkl l kj j

l j

LM L W s

dt

Continuous variablesSequences of discrete state Multiple choice

|jt t kp s x x

|t dt k t l klp x x x x

0log |t k tp x x s

Input layer

Recurrent layer

W

M

Alternative approaches• Linearization of the recurrent equations. Recurrent network of leaky

integrate and fire neuron. (Rao, 2001)

• Membrane potentials are log probabilities. Spike generation exponentiates (Rao, 2003)

• Firing rate are probabilities. Multiplicative dendrites (Beck and Pouget, 2007)

• Generalization of line attractor networks (Deneve et al, 2007).

• Deterministic spike generation mechanism: spikes signal increase in probability (Deneve, 2007).

… …

Speed inputPosition input

Preferred arm speedPreferred arm position

Spi

kes

#

Force

Tim

e

Act

ivit

yA

ctiv

ity

Act

ivit

y

Preferred force

f ( 1)t

f (2)

f (1)

Optimal filtering of noisy sensory input in the presence of movement

0x

INTERNAL MODEL

1x2x

Activity

Act

ivit

y

Activity

Eff

eren

t mot

or c

omm

and

Position input

Speed inputArm position

Arm

spee

d

Sensori-motor Map

Efferent motor command

Feedforward connections: W

Predictive (lateral) connections:

px

sxcx

ipx'i

px

'kcx

kcx

'jsx

jsx

Lateral connections: M

Network model

# S

pik

es

Preferred arm position

# S

pik

es

Preferred arm position

# S

pik

es

Preferred arm position

# Spikes

Preferred arm

speed

# Spikes

Preferred arm

speed

# Spikes

Preferred arm

speed

ˆ ( )px t

ˆ ( )sx t

Position

Speed

Tuning curves of sensorimotor neuron reflects the reliability and covariance of the different sensory and motor variables.

0

5

10

Act

ivit

y

0 10 20 30 40 50

Speed (cm/sec)

Prediction: Partially shifting representation of position and speed.

Arm at 0cm

Arm at 20cm

Population vector points in the right direction!

Individual cells shifts their velocity tunings curves with position

0

5

10

Act

ivit

y

0 10 20 30 40 50

Speed (cm/sec)

Prediction: Partially shifting representation of position and speed.

Arm at 0cm

Arm at 20cm

Cell’s selectivity is described by the 2D tuning curve:

Individual cells shifts their velocity tunings curves with position

unbiased

shifting

Spike generation.

• Rate coding: information is in spike count. Spike times are random (Poisson).

• Deterministic spike generation rule: each spike signals a change in the belief state.

LIP/MT model

Left>Right

Right>Left

Rightward motion

Leftward motion

logt

p rightL

p left

Firing rate

Noisy reports on a murder case?

Dupont Durand Smith

P(guilty)

Durand

Durand

Smith

Durand

Dupont

LIP/MT model

Left>Right

Right>Left

Rightward motion

Leftward motion

logt

p rightL

p left

Integrate and fire

Deterministic firing

tL

time

-2

0

2

0 2000

Spi

kes

Ot

' it i t

i

LL w s

t

Syn

apti

c in

put

time

' t t

GG O

t

tO

-4

-2

0

2

4

Lo

g o

dd

s

500 1000 1500 2000 2500 3000tL

tG

Integrate input (what I know)

(What I know)

Integrate output (what I told)-

(What I told in the past)

' t o t

GG g O

t

' it i t

i

LL w s

t

Mechanism for spike generation in Bayesian neurons

tO

-4

-2

0

2

4

Lo

g o

dd

s

500 1000 1500 2000 2500 3000tL

tG

Integrate input (what I know)

Integrate output (what I told)-

Mechanism for spike generation in Bayesian neurons

0 100 200 300 400

-5

-4

-3

-1

0

1

2

3

4

0

Time0 100 200 300 400

-5

-4

-2

-1

0

1

2

0

Time

go

tLtt tV GL

Integrator with adapting threshold Integrate and fire with adaptive time constant

Neurons cannot all be integrators

? ??

1000 2000 3000 4000 5000-10

0

10

1000 2000 3000 4000 5000-10

0

10

1000 2000 3000 4000 5000-10

0

10

Lt

Time

1000 2000 3000 4000 5000-10

0

10

1000 2000 3000 4000 5000-10

0

10

1000 2000 3000 4000 5000-10

0

10

Spikes deterministically signal an increase in probability

? ??

Lt

Time

Generalization to continuous variables

xtime

exp tkkl l kj j

l j

LM L W s

dt

W

M

Threshold for spiking: expkkl l kj t

l j

GM G O

dt

Time

Implication 1: Spikes signal increase in probability

A spike signals an increase in the probability of a binary variable.

P(xt)

syna

pse

Time

0 10 20 30 400

10

20

30

40

0 200 400 6000

1000

2000

3000

4000

5000

ISI

Co

un

t

Mean spike count

Va

rian

ce s

pik

e c

ou

nt

Implication 2: Firing rate statistics are similar to Poisson, but these fluctuations purely reflects input noise.

Poisson statistics.

The spike train is a deterministic function of the input.

Ot

1000 2000 3000

40

0

Time

Implication 3: Firing precision depends on the proportion meaningful fluctuations.

Tria

ls

Time0 1000 2000

Time0 1000 2000

Tria

ls

ConclusionInformation encoded in noisy population codes can be decoded using recurrent line attractor networks.

However, in order to combine cues and to integrate information over time, it is necessary to represent probability distributions, not only estimates of sensory and motor variables.

This representation could be implicit (i.e. gain encoding) but this implies strong limitations on the statistical problems that can to be solved.

This representation could be more explicit. This seems to account for the integrate and fire dynamics of biological neurons.

But this puts into question the traditional concept of “neural signal” and “neural noise”. Spikes signaling deterministic changes in the belief state share properties with Poisson distributed “rate models”, but merely reflect fluctuations in the input.

This also implies whole new sets of predictions for link between biophysics and behavior.

Internal beliefs

Behavioral strategies

State of the word or body

Inference Prediction

decisions explorations

PredictionLikelihood

Maximize Utility/Reward

Models, Probabilities, priors….

Bayesian models

Towards the Bayesian Brain?

Expectation-Maximization

Repeat

• Expectation step: Compute the expected value of the state given the observations and the current set of parameters.

• Maximization step: Choose parameters maximizing the probability of observations given the expected value of the state.

1ts ts 1ts

txdttx dttx

0 1 1

time

Learning

E(xt)

1ts ts 1ts

txdttx dttx

0 1 1

Repeat

• Expectation step: Compute the expected value of the state given the observations and the current set of parameters.

• Maximization step: Choose parameters maximizing the probability of observations given the expected value of the state.

Lf

time

Lb

Ltot

time

Learning

E(xt)1ts ts 1ts

txdttx dttx

0 1 1

Repeat

• Expectation step: Compute the expected value of the state given the observations and the current set of parameters.

• Maximization step: Choose parameters maximizing the probability of observations given the expected value of the state.

time

Learning

E(xt)1ts ts 1ts

txdttx dttx

0 1 1

Repeat

• Expectation step: Compute the expected value of the state given the observations and the current set of parameters.

• Maximization step: Choose parameters maximizing the probability of observations given the expected value of the state.

time

Learning

E(xt)1ts ts 1ts

txdttx dttx

0 1 1

Repeat

• Expectation step: Compute the expected value of the state given the observations and the current set of parameters.

• Maximization step: Choose parameters maximizing the probability of observations given the expected value of the state.

time

Learning

E(xt)1ts ts 1ts

txdttx dttx

0 1 1

Repeat

• Expectation step: Compute the expected value of the state given the observations and the current set of parameters.

• Maximization step: Choose parameters maximizing the probability of observations given the expected value of the state.

Dynamics at multiple time scales in spiking neurons

2 2.5 3 3.5 4 4.5 5 5.5 6-10

-5

0

5

10

Fast time constant: Inference, spiking

Time (hours)

Lt

Ot

Time (hours)

iw

onr

offr

Slow time constant: Learning, adaptation(on-line EM)

2 2.5 3 3.5 4 4.5 5 5.5 6

x 104

0.008

0.01

0.012

2 2.5 3 3.5 4 4.5 5 5.5 6

x 104

0.04

0.06

2 2.5 3 3.5 4 4.5 5 5.5 6

x 104

0

0.2

0.4

2 2.5 3 3.5 4 4.5 5 5.5 64

-0.1

-0.05

0

1ts 2

ts 3ts 4

ts 5ts 6

ts

1th 2

th 3th 4

th

11th 1

2th 1

3th 1

4th

Learning in networks

h(cuddly zebra)=1 h(dangerous tiger)=1

s(striped patch)=1

1ts 2

ts 3ts 4

ts 5ts 6

ts

1th 2

th 3th 4

th

11th 1

2th 1

3th 1

4th

1ts 2

ts 3ts 4

ts 5ts 6

ts

Divisive inhibition

Learning in networks

2( 1| )p h s

Contrast

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8

top related