hw 4,me 240 dynamics, fall 2017 - 12000.org

Post on 16-Oct-2021

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

HW 4,ME 240 Dynamics, Fall 2017

Nasser M. Abbasi

December 30, 2019

0.1 Problem 1

The velocity in meter per second is

๐‘ฃ = 228 ๏ฟฝ1000๐‘˜๐‘š ๏ฟฝ ๏ฟฝ

โ„Ž3600๏ฟฝ

= (228)10003600

= 63.333 m/s

In normal direction, the acceleration is ๐‘Ž๐‘› =๐‘ฃ2

๐œŒ = (63.333)2

115 = 34.879 m/s2 or in terms of ๐‘”, it

becomes 34.8799.81 = 3.555 g.

Now, force balance in vertical direction gives

๐ฟ โˆ’ ๐‘š๐‘” = ๐‘š๐‘Ž๐‘›๐ฟ = ๐‘š ๏ฟฝ๐‘” + ๐‘Ž๐‘›๏ฟฝ

= 970 (9.81 + 34.879)= 43348.33 N

0.2 Problem 2

1

2

For maximum speed, friction acts downwards as car assumed to be just about to slideupwards. Resolving forces in normal and tangential gives

๐œ‡๐‘ ๐‘ cos๐œƒ + ๐‘ sin๐œƒ = ๐‘š๐‘ฃ2max๐œŒ

(1)

โˆ’๐‘š๐‘” + ๐‘ cos๐œƒ โˆ’ ๐œ‡๐‘ ๐‘ sin๐œƒ = 0 (2)

From (2)

๐‘ =๐‘š๐‘”

cos๐œƒ โˆ’ ๐œ‡๐‘  sin๐œƒFrom (1)

๐‘ฃ2max =๐œŒ๐‘š

๏ฟฝ๐œ‡๐‘ ๐‘ cos๐œƒ + ๐‘ sin๐œƒ๏ฟฝ

=๐œŒ๐‘š ๏ฟฝ๐œ‡๐‘  ๏ฟฝ

๐‘š๐‘”cos๐œƒ โˆ’ ๐œ‡๐‘  sin๐œƒ๏ฟฝ

cos๐œƒ + ๏ฟฝ๐‘š๐‘”

cos๐œƒ โˆ’ ๐œ‡๐‘  sin๐œƒ๏ฟฝsin๐œƒ๏ฟฝ

= ๐œŒ ๏ฟฝ๐œ‡๐‘  ๏ฟฝ๐‘”

cos๐œƒ โˆ’ ๐œ‡๐‘  sin๐œƒ๏ฟฝcos๐œƒ + ๏ฟฝ

๐‘”cos๐œƒ โˆ’ ๐œ‡๐‘  sin๐œƒ๏ฟฝ

sin๐œƒ๏ฟฝ

= ๐œŒ๐‘” ๏ฟฝ๐œ‡๐‘ 

1 โˆ’ ๐œ‡๐‘  tan๐œƒ+

tan๐œƒ1 โˆ’ ๐œ‡๐‘  tan๐œƒ๏ฟฝ

= ๐œŒ๐‘” ๏ฟฝ๐œ‡๐‘  + tan๐œƒ1 โˆ’ ๐œ‡๐‘  tan๐œƒ๏ฟฝ

= 324 (9.81)

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ0.2 + tan ๏ฟฝ31 ๐œ‹

180๏ฟฝ

1 โˆ’ 0.2 tan ๏ฟฝ31 ๐œ‹180

๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

= 2893.165 m/s

Hence

๐‘ฃmax = 53.788 m/s

= 53.788 (0.001) (3600)= 193.637 km/hr

For minimum speed, friction acts upwards as car assumed to be just about to slide down-wards. Resolving forces in normal and tangential gives

โˆ’๐œ‡๐‘ ๐‘ cos๐œƒ + ๐‘ sin๐œƒ = ๐‘š๐‘ฃ2min๐œŒ

(3)

โˆ’๐‘š๐‘” + ๐‘ cos๐œƒ + ๐œ‡๐‘ ๐‘ sin๐œƒ = 0 (4)

From (4)

๐‘ =๐‘š๐‘”

cos๐œƒ + ๐œ‡๐‘  sin๐œƒ

3

From (3)

๐‘ฃ2min =๐œŒ๐‘š

๏ฟฝโˆ’๐œ‡๐‘ ๐‘ cos๐œƒ + ๐‘ sin๐œƒ๏ฟฝ

=๐œŒ๐‘š ๏ฟฝโˆ’๐œ‡๐‘  ๏ฟฝ

๐‘š๐‘”cos๐œƒ + ๐œ‡๐‘  sin๐œƒ๏ฟฝ

cos๐œƒ + ๏ฟฝ๐‘š๐‘”

cos๐œƒ + ๐œ‡๐‘  sin๐œƒ๏ฟฝsin๐œƒ๏ฟฝ

= ๐œŒ๐‘” ๏ฟฝโˆ’๐œ‡๐‘  ๏ฟฝ1

cos๐œƒ + ๐œ‡๐‘  sin๐œƒ๏ฟฝcos๐œƒ + ๏ฟฝ

1cos๐œƒ + ๐œ‡๐‘  sin๐œƒ๏ฟฝ

sin๐œƒ๏ฟฝ

= ๐œŒ๐‘” ๏ฟฝโˆ’๐œ‡๐‘ 

1 + ๐œ‡๐‘  tan๐œƒ+

tan๐œƒ1 + ๐œ‡๐‘  tan๐œƒ๏ฟฝ

= ๐œŒ๐‘” ๏ฟฝtan๐œƒ โˆ’ ๐œ‡๐‘ 1 + ๐œ‡๐‘  tan๐œƒ๏ฟฝ

= 324 (9.81)

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

tan ๏ฟฝ31 ๐œ‹180

๏ฟฝ โˆ’ 0.2

1 + 0.2 tan ๏ฟฝ31 ๐œ‹180

๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

= 1137.425 m/s

Hence

๐‘ฃmin = 33.726 m/s

= 33.726 (0.001) (3600)= 121.414 km/hr

Hence

121.414 โ‰ค ๐‘ฃ โ‰ค 193.637

0.3 Problem 3

4

0.3.1 part (1)

Since acceleration is constant along barrel, then using

๐‘ฃ2๐‘“ = ๐‘ฃ20 + 2๏ฟฝฬˆ๏ฟฝ๐ฟ

We will solve for ๏ฟฝฬˆ๏ฟฝ. Assuming ๐‘ฃ0 = 0 then

16812 = 2๏ฟฝฬˆ๏ฟฝ (4.2)

๏ฟฝฬˆ๏ฟฝ =16812

2 (4.2)= 336400.1 m/s2

But

๏ฟฝฬ„๏ฟฝ = ๏ฟฝ๏ฟฝฬˆ๏ฟฝ โˆ’ ๐ฟ๏ฟฝฬ‡๏ฟฝ2๏ฟฝ ๏ฟฝฬ‚๏ฟฝ๐‘Ÿ + ๏ฟฝ๐ฟ๏ฟฝฬˆ๏ฟฝ + 2๏ฟฝฬ‡๏ฟฝ๏ฟฝฬ‡๏ฟฝ๏ฟฝ ๏ฟฝฬ‚๏ฟฝ๐œƒBut ๏ฟฝฬˆ๏ฟฝ = 0, hence the above becomes

๏ฟฝฬ„๏ฟฝ = ๏ฟฝ336400.1 โˆ’ (4.2) (0.18)2๏ฟฝ ๏ฟฝฬ‚๏ฟฝ๐‘Ÿ + (2 (1681) (0.18)) ๏ฟฝฬ‚๏ฟฝ๐œƒ= 336400 ๏ฟฝฬ‚๏ฟฝ๐‘Ÿ + 605.16 ๏ฟฝฬ‚๏ฟฝ๐œƒ

0.3.2 part (2)

Free body diagram for bullet gives

๐‘ƒ = ๐‘š๐‘Ž๐‘Ÿ + ๐‘š๐‘” sin๐œƒ

but ๐‘Ž๐‘Ÿ = 336400 m/s2 and ๐‘š = 16.9 kg and ๐œƒ = 230, hence

๐‘ƒ = (16.9) (336400) + (16.9) (9.81) sin ๏ฟฝ(23)๐œ‹180

๏ฟฝ

= 5685225 N= 5.685 ร— 106 N

0.3.3 Part (3)

Free body diagram for bullet gives

๐‘ = ๐‘š๐‘Ž๐œƒ + ๐‘š๐‘” cos๐œƒ

= (16.9) (605.16) + (16.9) (9.81) cos ๏ฟฝ(23) ๐œ‹180

๏ฟฝ

= 10379.81 N= 10.379 ร— 103 N

0.4 Problem 4

5

The free body diagram is

A

BF0

A

BF0

FBD

WA

FA

NA

WB NA

FA

FB

NB

โ‡โ‡’

A

B

maAx

maAy = 0

maBx

maBy = 0

For ๐ด,๏ฟฝ๐น๐‘ฅ = ๐‘š๐ด๐‘Ž๐ด๐‘ฅ

๐น๐ด = ๐‘š๐ด๐‘Ž๐ด๐‘ฅ (2)

๏ฟฝ๐น๐‘ฆ = ๐‘š๐ด๐‘Ž๐ด๐‘ฆ

๐‘๐ด โˆ’๐‘Š๐ด = 0 (3)

For ๐ต๏ฟฝ๐น๐‘ฅ = ๐‘š๐ต๐‘Ž๐ต๐‘ฅ

๐น๐‘œ โˆ’ ๐น๐ด โˆ’ ๐น๐ต = ๐‘š๐ต๐‘Ž๐ต๐‘ฅ (4)

๏ฟฝ๐น๐‘ฆ = ๐‘š๐ต๐‘Ž๐ต๐‘ฆ๐‘๐ต โˆ’๐‘Š๐ต โˆ’ ๐‘๐ด = 0 (5)

Hence (3) becomes

๐‘๐ด = ๐‘Š๐ด (6A)

= ๐‘š๐ด๐‘”

And (5) becomes

๐‘๐ต = ๐‘Š๐ต + ๐‘๐ด

= ๐‘š๐ต๐‘” + ๐‘š๐ด๐‘”= (๐‘š๐ต + ๐‘š๐ด) ๐‘” (6B)

But ๐น๐ด = ๐‘๐ด๐œ‡1 then (2) becomes

๐‘๐ด๐œ‡1 = ๐‘š๐ด๐‘Ž๐ด๐‘ฅ

But from (6) the above reduces to (since ๐‘๐ด = ๐‘š๐ด๐‘”)

๐‘š๐ด๐‘”๐œ‡1 = ๐‘š๐ด๐‘Ž๐ด๐‘ฅ

6

Hence

๐‘Ž๐ด๐‘ฅ = ๐‘”๐œ‡1

= (32.2) (0.26)

= 8.372 ft/s2

Similarly ๐น๐ต = ๐‘๐ต๐œ‡2 hence (4) becomes

๐น๐‘œ โˆ’ ๐‘๐ด๐œ‡1 โˆ’ ๐‘๐ต๐œ‡2 = ๐‘š๐ต๐‘Ž๐ต๐‘ฅBut ๐‘๐ต = (๐‘š๐ด + ๐‘š๐ต) ๐‘”, then above becomes

๐น๐‘œ โˆ’ ๐‘š๐ด๐‘”๐œ‡1 โˆ’ (๐‘š๐ด + ๐‘š๐ต) ๐‘”๐œ‡2 = ๐‘š๐ต๐‘Ž๐ต๐‘ฅ

๐‘Ž๐ต๐‘ฅ =๐น๐‘œ โˆ’ ๐‘š๐ด๐‘”๐œ‡1 โˆ’ (๐‘š๐ด + ๐‘š๐ต) ๐‘”๐œ‡2

๐‘š๐ต

๐‘Ž๐ต๐‘ฅ =438 โˆ’ (50) (0.26) โˆ’ (50 + 71) (0.46)

7132.2

= 167.504 ft/sec2

0.5 Problem 5

Free body diagram for block ๐ต results in

2๐‘” โˆ’8๐‘‡๐‘š๐ต

= ๐‘Ž๐ด

Free body diagram for block ๐ด resuts in

โˆ’๐‘š๐ด๐‘” sin๐œƒ โˆ’ ๐œ‡๐‘š๐ด๐‘” cos๐œƒ + 2๐‘‡ = ๐‘š๐ด๐‘Ž๐ดIn addision, since rope length is fixed, we find that ๐‘Ž๐ด = 2๐‘Ž๐ต. The above are 3 equations in3 unknowns ๐‘‡, ๐‘Ž๐ด, ๐‘Ž๐ต. Solving gives

๐‘Ž๐ด = 4.439 m/s2

๐‘Ž๐ต = 2.2197 m/s2

๐‘‡ = 37.95 N

7

0.6 Problem 6

maximum displacement is 2 ft. Maximum speed is 9.404 ft/sec.

top related