inter strip resistance in silicon position-sensitive detectors

Post on 30-Dec-2015

33 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Inter strip resistance in silicon position-sensitive detectors. E. Verbitskaya , V. Eremin, N. Safonova* Ioffe Physical-Technical Institute of Russian Academy of Sciences St. Petersburg, Russia *also Saint-Petersburg Electrotechnical University “LETI”, Russia N. Egorov, S. Golubkov - PowerPoint PPT Presentation

TRANSCRIPT

1

Interstrip resistance in silicon position-sensitive detectors

E. Verbitskaya, V. Eremin, N. Safonova*

Ioffe Physical-Technical Institute of Russian Academy of SciencesSt. Petersburg, Russia

*also Saint-Petersburg Electrotechnical University “LETI”, Russia

N. Egorov, S. Golubkov

Research Institute of Material Science and Technology (RIMST)Zelenograd, Russia

15 RD50 WorkshopCERN, Geneva, November 16-18, 2009

2

Outline

• Motivation• Physical model of interstrip resistance• Experimental results on interstrip resistance in as-

processed Si detectors• Influence of nonequilibrium carrier generation• RIS in n-type FZ and CZ Si samples

Conclusions

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

3

Motivation

Current subjects:

Development of operational model for voltage terminating structure (VTS) and current terminating structure (CTS, edgeless detectors)

Strip detector performance at SLHC: very high fluences and enhanced bulk generated current

Noise performance of spectroscopic strip detectors (GSI, Darmstadt)

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

4

Special design of test structures

FZ n-Si, >5 k d = 300 m Vfd 20 V

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

p+-n-n+ structure - area 1x1 mm2

Strips: two interpenetrating “combs”: - pitch 25 m increased length of interstrip gap

equivalent to 4 cm strips

1

2

5

Physical model

1 = 2

- potentials at the strips

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

Distortion of symmetric distributions of potential and electric field may stimulate excess current flow between strips

Components that control interstrip resistance RIS:

- surface leakage- interface current

SiO2p+

n+

Interface current

1 2

Surface leakageSiO2p+

n+

Interface current

1 2

Surface leakage

6

Measurements of interstrip gap

characteristics

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

U1 – bias voltage applied to p-n junction

U2 – bias voltage between the strips

7

I-V characteristics of interstrip gap

I = Id + Iinst

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

-3

-2

-1

0

1

2

3

-25 -20 -15 -10 -5 0 5 10 15 20 25U 2 (V)

I (

mA

)

V1=0V1=5VV1=10VV1=20VV1=30VV1=50VV1=70VV1=90V

1

Id – strip dark currentIinst – interstrip current

FZ n-Si, # WP 3-6-2

A

U2

I instI d

IA

U2

I instI d

I

8E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

Current flow in interstrip gap

U2cr with U1

U2cr - range of bias voltage in which Iinst is small

hole drift

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-30 -20 -10 0 10 20 30

U 2 (V)

I (m

A)

U1 = 30 V

U2cr

9

Interstrip current Iinst

Iinst(U2): dark current is subtracted

Regions with different slopes:

A and A*: R = (dIinst/dU2)-1

- ohmic isolation resistance, independent on U1, related mainly with surface leakage

B: current step Iinst

Iinst and dIinst/dU2 as U1

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

Interstrip resistance:

RIS = dU2/dIinstInterstrip current, FZ, # WP 3-6-2

-0.05

0.00

0.05

0.10

0.15

-5 -4 -3 -2 -1 0 1 2 3 4 5U 2 (V)

I ins

t (n

A)

05V10V20V30V50V70V90V

U1 (V):

I inst

A

A*

B

10

Origin of interstrip current step Iinst

≠ 2

Current switching – redistribution of strip hole currents

In detector: Switching acts asnegative feedback recovery of potential balance

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

Rsw = (dIinst/dU2)-1

in Iinst region

11

Interstrip resistance vs bias voltage

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

Rsw = dU2/dIis at U2 0

Rsw with U1

R 200 G

irrespective to U1 and at ±U2

0 20 40 60 80 1000

10

20

30

40

50

60

70

Rs

w (

G)

U1 (V)

RRs

w

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

-6 -4 -2 0 2 4 6

U 2 (V)

I inst

(n

A)

U1 = 30 VR

R

Rsw

12

Influence of nonequilibrium carrier generation

Carrier generation: - by LED illuminating p+ side - white light on n+ side

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

Interstrip current vs. U2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

-6 -4 -2 0 2 4 6

U 2 (V)

I ins

t (n

A)

50 V

70 V

90 V

U1:

Current vs. U2, p+ illumination

0

2

4

6

8

10

12

-6 -4 -2 0 2 4 6U 2 (V)

I (n

A)

50 V

70 V

90 V

U1:

Current vs. U2, n+ illumination

0

1

2

3

4

-6 -4 -2 0 2 4 6U 2 (V)

I (n

A)

50 V

70 V

90 V

U1:

I = Iph + Iinst

13

Influence of nonequilibrium carrier generation on RIS

R and Rsw with carrier generation

R p+ illumination – high n and p under SiO2

Rsw at carrier generation: no dependence on U1

– switching is controlled by photocurrent rather than dark current

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

Ratio of Rsw is about one half of current ratio since ½ of a total structure current is switched

40 50 60 70 80 90 100 110 1200.1

1

10

100

R,

, Rs

w (

G)

U1 (V)

R, darkness

R, p+ illumination

R, n+ illumination

Rsw, darkness

Rsw, p+ illumination

Rsw, n+ illumination

14

Influence of Si type

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

Similar behavior of Iinst vs. U1 and U2

Interstrip current, # CZ 311-2

-0.1

-0.05

0

0.05

0.1

0.15

-4 -3 -2 -1 0 1 2 3 4U 2 (V)

I ins

t (n

A)

05 V10 V20 V30 V50 V70 V90 V

U1:

FZ n-Si CZ n-SiInterstrip current, FZ, # WP 3-6-2

-0.05

0.00

0.05

0.10

0.15

-5 -4 -3 -2 -1 0 1 2 3 4 5U 2 (V)

I ins

t (n

A)

05V10V20V30V50V70V90V

U1 (V):

I inst

A

A*

B

15

Comparison of Iinst for different Si types

U2cr is smaller in CZ Si

U2 corresponding to Iinst is smaller in CZ Si

Ris similar

Current vs. U 2

-0.1

-0.05

0

0.05

0.1

-20 -15 -10 -5 0 5 10 15 20U 2 (V)

I (m

A)

FZ, WP 3-6-2

CZ, 311-2

U1 = 90 V

Interstrip current

-0.05

0

0.05

0.1

0.15

-6 -4 -2 0 2 4 6

U 2 (V)

I inst

(nA

)

FZ, WP 3-6-2

CZ, 311-2

U1 = 90 V

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

16

Comparison of Rsw for different Si types

0 20 40 60 80 1000

10

20

30

40

50

60

70

Rs

w (

G)

U1 (V)

FZ, WP 3-6-2 CZ, 311-2

Parameterization: Rsw = A - B(U1)0.5

Rsw is smaller in CZ Si

0 2 4 6 8 10 120

10

20

30

40

50

60

70

Rs

w (

G

(U1)0.5 (V)0.5

FZ Si CZ Si

FZ: Rsw = 7.21010 – 5.9 109(U1)0.5 CZ: Rsw = 2.51010 – 2.2109(U1)0.5

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

Rsw depends on bulk generation current

17

Different wafer orientation

Detectors with different configuration

Study of irradiated Si detectors

Future studies

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

18

Conclusions

The factors that define interstrip isolation resistance are: - surface leakage, - interface current, - new mechanism - distortion of symmetric potential distribution at the

strips and switching of strip currents.

Switching of strip currents is a negative effect since it decreases interstrip isolation. This effect may control interstrip resistance rather than ohmic conductance between the strips.

R is about 200 G irrespective to the bias voltage while Rsw is bias dependent and decreases with bias voltage rise down to few G

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

Results are partially published in: V. Eremin et al., Semiconductors 43 (2009) 796.

19

This work was made in the framework of RD50 collaboration and supported in part by:• RF President Grant # 2951.2008.2 • Fundamental Program of Russian Academy of Sciences on collaboration with CERN

Acknowledgments

Thank you for attention!

E. Verbitskaya et al., 15 RD50 Workshop, CERN, Geneva , Nov 16-18, 2009

top related