iros 2013 - force-position control for a miniature camera robotic system for single-site surgery

Post on 28-Jan-2018

31 Views

Category:

Health & Medicine

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

Irene Rivas Blanco

E. Bauzano ,M. Cuevas-Rodriguez, P. Del Saz-Orozco, V.F. Muñoz

Department of System Engineering and Automation

University of Málaga (Spain)

FORCE-POSITION CONTROL FOR A

MINIATURE CAMERA ROBOTIC SYSTEM FOR

SINGLE-SITE SURGERY

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

I. INTRODUCTION

II. CAMERA ROBOTIC SYSTEM

III. FORCE-POSITION CONTROL

IV. EXPERIMENTS

V. CONCLUSIONS & FUTURE WORK

INDEX

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

I. INTRODUCTION

• Single-site surgery

Loss of triangulation between camera and

instruments

Limitation of the range of motion of instruments outside the abdomen

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

I. INTRODUCTION

• Robotic system for Single-Site surgery

Camera robot

Magnetic holder

Robotic arm

Entry port

Abdominal wall

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

II. CAMERA ROBOTIC SYSTEM

Wrist attachmentPan

Tilt

-42º 42º

C

B

A

• Wireless Camera Robot

Camera robot

Magnetic holder

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

III. FORCE-POSITION CONTROL

Hybrid Force-Position

Control

Torque Compensation

• Hybrid force-position control with torque compensation

ROBOT ENVIRONMENT

‐ Hybrid force-position control tracks position reference along thetangent directions of the surface while exerting a force along thenormal direction.

‐ Torque compensation mantains the robot orientationperpendicular to the surface at the contact point

Position

Orientation

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

III. FORCE-POSITION CONTROL

+

+

PN

F

DΔF Force

controller

P

ENVIRONMENT

Position

controller

PT-

+

TA

SK

PL

AN

NE

R

Pr

Fr

I-D

+

-

PROBOT

• Hybrid force-position control

‐ Position control law: PI controller

‐ Force control law: elastic interaction model between the robot and the contact surface of stiffness matrix Kx

ΔF = Kx ΔPN

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

III. FORCE-POSITION CONTROL

• Torque compensation

‐ Rotation by an angle α in theopposite direction of the torque vector

‐ Quaternion-based orientationcontroller

F

Torque

compensation

Δτ Orientation

controller

+

-

Rτd

R

ROBOT

τ

ENVIRONMENT

Surfacez

z

F

α

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

IV. EXPERIMENTS

• Experiment design

1. Initial stiffness matrix estimation

2. Displacement of the camera robot 10 cm along the y-direction while exerting an 8 N force on the z-direction.

z

y

Barret WAM

Abdomen simulator

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

III. EXPERIMENTS

- Recurrent Least Square (RLS) algorithm

• Stiffness matrix estimation

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

III. EXPERIMENTS

- Recurrent Least Square (RLS) algorithm

• Stiffness matrix estimation

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

III. EXPERIMENTS

• Displacement of the camera robot

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

III. EXPERIMENTS

• Experimental results: force

- Maximum error = 160 mN

- Sensor resolution = 50 mN

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

III. EXPERIMENTS

• Experimental results: displacement

- Trapezoidal velocity profile

- Maximum error = 4.5 mm

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

III. EXPERIMENTS

• Experimental results: orientation

- Maximum error = 2.1 grades

- Mean error = 1.3 grades

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

III. CONCLUSIONS AND FUTURE WORK

‐ The camera robotic system solves the problem of the loss of triangulation and reduces the number of instruments sharing thesingle port

‐ Hybrid force-position control with torque compensation todisplace the camera robot along the abdominal wall

‐ Online environment stiffness matrix to take into account eachpatient characteristics

‐ Reduce the overall size of the camera robot

‐ Experiments with different contact surfaces

• Conclusions

• Future Work

Dep

art

men

t o

f S

ysy

em

En

gin

eeeri

ng

an

d A

uto

mati

on

Víctor F. Muñoz Martínez

Research lines

THANK YOU FOR YOUR ATTENTION

top related