joshua d. bodyfelt - max planck societybodyfelt/lectures/nl_scaling_qsc.pdf · one parameter...

Post on 06-Apr-2020

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

One Parameter Scaling Theory for Stationary One Parameter Scaling Theory for Stationary States of Disordered Nonlinear SystemsStates of Disordered Nonlinear Systems

One Parameter Scaling Theory for Stationary One Parameter Scaling Theory for Stationary States of Disordered Nonlinear SystemsStates of Disordered Nonlinear Systems

Joshua D. Bodyfeltin collaboration with

Tsampikos Kottos & Boris Shapiro

Max­Planck­Institute für Physik komplexer SystemeCondensed Matter Division

in cooperation with

Wesleyan University, CQDMP GroupTechnion – Israel Institute of Technology

supported by

U.S. ­ Israel Binational Science Foundation (BSF)DFG FOR760 ­ “Scattering Systems with Complex Dynamics” 

New Perspectives in Quantum Statistics and Correlations – Heidelberg – Mar. 4th  2010 

    A Brief SynopsisA Brief Synopsis    A Brief SynopsisA Brief Synopsis

A. Brief Review of Disorder

1. Motivations from the Laboratory

2. A Characteristic Length for Anderson Localization

3. Modeling Disorder in Quasi­1D Systems

3. One Parameter Scaling Theory (OPST)

B. Including Nonlinearity 

1. A Brief Mention of Nonlinear Numerical Methods

2. Nonlinear Parametric Evolution

3. Failure of Linear OPST

4. Setting Nonlinear References

5. The Nonlinear OPST

C. Conclusions

  Motivations from the LaboratoryMotivations from the Laboratory  Motivations from the LaboratoryMotivations from the Laboratory

From Acoustics...

Hu, et al. Nature­Phys. 4, 945 (2008)

...to Optics...

...to Atomics...

Lahini, et al. Phys. Rev. Lett. 100, 013906 (2008) 

 A. Aspect, et al., Nature 453, 891 (2008) 

“Does Localization Survive the Nonlinearity?”

    A Characteristic Length for Anderson LocalizationA Characteristic Length for Anderson Localization    A Characteristic Length for Anderson LocalizationA Characteristic Length for Anderson Localization

N~NExtended

Nref

“Ergodic”

N≃N

Localized

∞≃∞

“Thermodynamic”

N

N=⟨1 /∑∣n∣4⟩

n=1

N

N=g ∞ ,Nref

  BRM ­ Modeling Disorder in Quasi­1D SystemsBRM ­ Modeling Disorder in Quasi­1D Systems  BRM ­ Modeling Disorder in Quasi­1D SystemsBRM ­ Modeling Disorder in Quasi­1D Systems

∞≃b2≫N ∞≃b

2≪N

⟨H nm⟩=0, ⟨H nm2 ⟩=

N11nm

b 2N−b1 ∈[−2,2]

= ∞ / Nref

Casati, Molinari, & Izrailev, Phys. Rev. Lett. 64, 1851 (1990) 

    One Parameter Scaling Theory (OPST) ­ BasicsOne Parameter Scaling Theory (OPST) ­ Basics    One Parameter Scaling Theory (OPST) ­ BasicsOne Parameter Scaling Theory (OPST) ­ Basics

Kawabata, Prog. Theo. Phys. Sup. 84, 16 (1985)

g =d ln g d ln N

N~g ∞ , N ● Question

● Renormalization Group Equation

N NFor                           , N ∞ ,N g g ∞ , N , does ?

v x= dxdt

form similar to dynamical flow:v

x

  OPST – BRM Linear CaseOPST – BRM Linear Case   OPST – BRM Linear CaseOPST – BRM Linear Case 

ln

ln g

g ≃c∞ /N

ref

1c∞ /Nref

=c1c

Kawabata, Prog. Theo. Phys. Sup. 84, 16 (1985)

Localized

Extended

Ergodic:            ,Nref

∞Thermodynamic: g≃N

Nref

Izrailev, Phys. Rep. 196, 299 (1990)

  A Brief Mention of Nonlinear Numerical MethodsA Brief Mention of Nonlinear Numerical Methods  A Brief Mention of Nonlinear Numerical MethodsA Brief Mention of Nonlinear Numerical Methods

“Continuation” Method

F n=∑ H nmm∣n∣2n−n ; n=1,2,. . , N

m

F N1=∑∣m∣2−1

m

➢ Take the linear eigensolutions

➢ DNLS­like Equation, add small nonlinearity

➢ Solutions found from minimizing the function 

using the linear eigensolutions as an initial guess. 

~10−4

∑ H nmm=n ; n=1,2,. . , Nm

∑ H nmm∣n∣2n=n ; n=1,2,. . , N

m

➢ Repeat for next step in nonlinearity, using new solution as initial guess.

  Parametric Nonlinear SpectraParametric Nonlinear Spectra   Parametric Nonlinear SpectraParametric Nonlinear Spectra 

  Parametric Wavefunction EvolutionParametric Wavefunction Evolution   Parametric Wavefunction EvolutionParametric Wavefunction Evolution 

Lahini, et al. Phys. Rev. Lett. 100, 013906 (2008) Bodyfelt, Kottos, & Shapiro,  Phys. Rev. Lett., submitted (2010)

  The Failure of Linear One­Parameter Scaling TheoryThe Failure of Linear One­Parameter Scaling Theory   The Failure of Linear One­Parameter Scaling TheoryThe Failure of Linear One­Parameter Scaling Theory 

Bodyfelt, Kottos, & Shapiro,  Phys. Rev. Lett., submitted (2010)

≠c1c

ln

ln g

g=N

Nref ;=

∞Nref

    Setting NonlinearSetting Nonlinear References ­ Localization LengthReferences ­ Localization Length     Setting NonlinearSetting Nonlinear References ­ Localization LengthReferences ­ Localization Length 

∞ Needs

N

Bodyfelt, Kottos, & Shapiro,  Phys. Rev. Lett., submitted (2010)

b=4

  Setting Nonlinear References ­ Localization LengthSetting Nonlinear References ­ Localization Length  Setting Nonlinear References ­ Localization LengthSetting Nonlinear References ­ Localization Length

● Small Nonlinear Limit

E int=

2N

E int=✴

2∞0=1/∞0 ✴~1

● Large Nonlinear Limit

∞0'boxes'

E int / box=

2∞∞0∞

=1/∞0

∞~∞0

   SettingSetting Nonlinear References ­ Localization LengthNonlinear References ­ Localization Length    SettingSetting Nonlinear References ­ Localization LengthNonlinear References ­ Localization Length 

Bodyfelt, Kottos, & Shapiro,  Phys. Rev. Lett., submitted (2010)

∞0

∞≃∞01a0

  Setting Nonlinear References – Full ErgodicSetting Nonlinear References – Full Ergodic  Setting Nonlinear References – Full ErgodicSetting Nonlinear References – Full Ergodic

y ∈ { N ∣n∣; n=1,2,. ..N }● Linear Case

M=∫ y2P ydy=1/NS=−∫ P y ln P y dyMaximize entropy:

Under the constraint:

Gaussian DistributionP y Nref 0=N /3

● Nonlinear Case

Minimize free energy: F [P ]=−SE intAM

P y =C exp −Ay2− y4

2 N

ref 0=N

  Setting Nonlinear References – Full ErgodicSetting Nonlinear References – Full Ergodic  Setting Nonlinear References – Full ErgodicSetting Nonlinear References – Full Ergodic

Nref=N ; 1 /3≤≤1

Bodyfelt, Kottos, & Shapiro,  Phys. Rev. Lett., submitted (2010)

  Constructing the Nonlinear OPSTConstructing the Nonlinear OPST  Constructing the Nonlinear OPSTConstructing the Nonlinear OPST

Linear Nonlinear

g≃N

Nref g≃

N

Nref

x=∞

Nref

=∞Nref

x=c x1cx

=c1c

  One Parameter Scaling Theory: Nonlinear CaseOne Parameter Scaling Theory: Nonlinear Case  One Parameter Scaling Theory: Nonlinear CaseOne Parameter Scaling Theory: Nonlinear Case

ln x

ln g

x= c x1cx

;c~0.98

Bodyfelt, Kottos, & Shapiro,  Phys. Rev. Lett., submitted (2010)

    ConclusionConclusion    ConclusionConclusion

➢ Nonlinear Scaling Theory Established 

x=∞

Nref

x =c x1cx

for the Single Parameter 

➢ Future Possibilities

● Nonlinear Scaling applied to Thouless Conductance

● Nonlinearity Effect on 3D Metal­Insulator Transition

● Field Theories to Incorporate Nonlinearity?

top related