laser plasma accelerators: from dream towards...

Post on 12-Aug-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Laser Plasma Accelerators: From Dream Towards Reality

Wim Leemans

CAMOS meeting

April 5, 2011

LOASIS Program, LBNLUC Berkeley

Laser

Injector Acceleration section

0.1-1 GeV

<-------------------- 3 cm ------------------->Tuesday, April 5, 2011

2

SLAC 50 GeV

7 TeVLHC

Accelerators: drivers for science

DNA

Tuesday, April 5, 2011

Accelerators: from handheld to size of a small country

3

Size x 105 Energy x 109

1929 LHC, 2010

30 MJ stored energy

Tuesday, April 5, 2011

Laser plasma acceleration enables development of “compact” accelerators

3

m-scale

100 micron-scale

10 – 40 MV/m

10 – 100 GV/m

Plasmas sustain extreme fields => compact acceleratorsCan this technology be developed for energy frontier machines, light sources, medical or homeland security applications?

Tuesday, April 5, 2011

• Basic concept of laser plasma acceleration

• Controlling particle injection

• LPA as building block for a hyperspectral source

• Laser technology and investments

• Conclusion

OUTLINE

Tuesday, April 5, 2011

Blow-out or bubble regime: the highly non-linear regime

Laser

Laser

Laser

(1) (2)

(3) (4)

++ +Laser

Tuesday, April 5, 2011

7

• E-fields: 10 – 100 GV/m => compact accelerators

Principle of Laser-Plasma Accelerators

Non-Linear (bubble/blow-out)

Laser beam

Laser

Electrons

Linear

Tuesday, April 5, 2011

Building  a  laser  plasma  accelerator  following  conven5onal  linac  paradigm

‣ Field  excita+on

‣ Accelerator  structure  and  length  

‣ Electron  injec+on

‣ Laser

Laser Injector Plasma Channel

Leemans et al., IEEE Trans. Plasma Science (1996), Phys. Plasmas (1998)Leemans and E. Esarey, Physics Today, March 2009Esarey, Schroeder and Leemans, Rev. Mod. Phys (2009)

Tuesday, April 5, 2011

Technical challenges in next 10 years

Multi-GeV beams

Lasers: high average power

Modeling

High quality beams

laser laser

Staging, optimized structures

100 TW, 10 Hz

BELLA 1PW, 1 Hz

Diagnostics/Radiation sourcesTuesday, April 5, 2011

Channel Guided Laser Plasma Accelerators – 2004 result

C. G. R. Geddes et al, Nature,431, p538 (2004)

10 TW laser => 100 MeV e-beam

Tuesday, April 5, 2011

15

Going to higher beam energy

electrode

gas in 0V+V

bellows

sapphire channel

laser in

§ Gas ionized by pulsed discharge§ Peak current 200 - 500 A§ Rise-time 50 - 100 ns

D. J. Spence & S. M. Hooker Phys. Rev. E 63 (2001) 015401 R; A. Butler et al. Phys. Rev. Lett. 89 (2002) 185003.

sapphire channel

Tuesday, April 5, 2011

A GeV module…

Tuesday, April 5, 2011

17

Experimental set-up

W.P. Leemans et. al, Nature Physics 2, p696 (2006)

40 TW laser => 1 GeV e-beam

Channel Guided Laser Plasma Accelerators – 2006 result

Tuesday, April 5, 2011

• Basic concept of laser plasma acceleration

• Controlling particle injection

• LPA as building block for a hyperspectral source

• Laser technology and investments

• Conclusion

OUTLINE

Tuesday, April 5, 2011

9

Operation in bubble non-linear regime: limited control

Courtesy of W. Mori, UCLA

§ High gradients§ Can produce narrow energy spread beams

BUT

§ Limited control§ Self-trapping (dark current)§ Can easily go unstable

Tuesday, April 5, 2011

Electrons surfing on a wave: controlled injection

Injected Electrons Injected Out of Phase

Self Injection

Trapping requires:-Tsunami- Boost electrons or slow down wave

Tuesday, April 5, 2011

n Couple (short, high plasma density) injector to (long, low density) plasma channel:

Integrated injector and accelerator for stability, improved beam quality

~GeVelectron beam

accelerator: ~cm, n~1018 cm-3

laser

z

Injector, ~mm, n~1019 cm-3n

RZ

n Two effects control wave’s phase velocity:

n Negative density gradient -> plasma wavelength increases

n Laser focus -> relativistic self-focusing results in plasma wavelength increase (decrease) before (after) focus

A.J. Gonsalves et al., submittedTuesday, April 5, 2011

Practical implementation of combined injector and acceleration stage

!"# $%&'()

*%+(,-.(%$/0$1

('(,&2$()(,

134)4/54/(

*%+(,6%7

687'9()

'8%1

:480+

(*(8),4'-/('+5)2

laserdensity

41)58%*+1(8),4$()(,

6.7

0

;<;( ;<0.027

/('+5)2-=>&-$?@A

8%15**%,2

18

laser

Injector Acceleration section

Tuesday, April 5, 2011

19

Tunable electron beams produced via laser focus control using jet+capillary module

0

0.1

Charge density (nC/MeV/SR)10 3020

20m

rad

Jet only, Jet and capillary

a) !x = 3.00 mmfGas jet ONLY

100 200 300 400Energy (MeV)

0

0.02

0

0.02

0

0.02

0

0.02

0

0.02 Charg

e d

ensity (p

C/M

eV

)

200 400

Angle

b) !x = 0.65 mmf

c) !x = 1.62 mmf

d) !x = 2.62 mmf

e) !x = 3.62 mmf

f) !x = 4.62 mmf

Jet +

cap

illar

y

A.J. Gonsalves et al., submitted

Energy variation <1.9 % rmsCharge variation < 4% rmsDivergence change < 0.57 mrad rms

3636Tuesday, April 5, 2011

20

Peak jet density (10 /cm )19 3

0

100

200

1.3 1.42

6

10

14

Energ

y of p

eak (M

eV

)Lase

r transm

ission (%

)

Laser transmission

Charg

e (

pC

)

ChargeEnergy of peak

g)

Tunable electron beams produced via gas jet pressure control in integrated structure

A.J. Gonsalves et al., submitted

Tuesday, April 5, 2011

• Basic concept of laser plasma acceleration

• Controlling particle injection

• LPA as building block for a hyperspectral source

• Laser technology and investments

• Conclusion

OUTLINE

Tuesday, April 5, 2011

!"#$%$&#'()&!*+!, #-.-/0,1023,4565,

!"#$%&'(%")*'+,-,.&/&-0'&",(1&'2#3&'-,"4&'56'65-&6-5"/',++1#),75"0'

•! !"#$%&'()'*(+*,-&

–! ./0(12,%)(0&*/*$0()#&3"#$%*,4&%56%&'*17&$"((*#0&89"/+27:;&

–! %70897/9:,/;7:28<79=>?<7,@902,A>/B8,C-A/B,

•! <5(*$0&",*&)=&*23"#$%*,-&

–! D,65,E/,970B7/B,F>.7B?:,GBAH,

–! D,65,E/,970B7/B,BAB:089:,GBAH,

•! >1?51+)#&,)"($*,-&

–! I<2B8B70,0B8>2B80=,BF9//9<7,

–! @.A&6*#*(1+)#&

–! @2(1B,&1#?&61991&(1B,&

Tuesday, April 5, 2011

Radiation from THz to Gamma Ray – synchronized and ultra-short

Thomson Scattering – Multi keV/MeV x-ray/gamma ray

Betatron radiation during acceleration – Multi keV

Free Electron Laser-> XUV, x-ray

e-beam

Transition radiation from beam exiting plasma – MV/cm THz

Laser

Laser

Tuesday, April 5, 2011

22

PlasmaLaserElectrons

Leemans et al. PRL 2003; POP2004; IEEE2005 Schroeder et al., PRE 2004;van Tilborg et al., Laser Part. Beams2004; PRL2006; POP2006; Optics Lett. 2006

Intense THz source• 0.01-10 MV/cm at focus (up to 10’s of µJ in THz pulse)• ‘traditional’ laser-based sources deliver <100 kV/cm

Tuesday, April 5, 2011

Single shot THz detection technique developed

ChirpedProbe Pulse

to spectrometer

Polarizer

EO XtalE-field: E(t)λ/4 plate

Modulated Probe

Matlis et al, Submitted to JOSA B

Short ReaderPulse

TEX-ogramTemporal Electric-field Cross-correlation (TEX)

23

OAP

OAP

THz

Probe

Leemans et al., Phys. Rev. Lett. 91(7) 074802 (2003)Schroeder et al., Phys. Rev. E 69, 016501 (2004)van Tilborg et al., Phys. Rev. Lett. 96, 014801 (2006)

Tuesday, April 5, 2011

26

THz from Laser Accelerated Bunches ready for “user” experiments

• THz source properties

• ETHz ~ 1-5 MV/cm

• High frequency 0.5-10 THz

• Intrinsic synchronization with laser, electrons, x-rays, etc.

• Single shot time-space resolved THz waveform measurement*

• Pump-probe experiments:

• Superconducting material studies (e.g., breaking of Cooper pairs)

• Non-linear carrier dynamics in semi-conductors

* N.H. Matlis et al., JOSA-B 2011Tuesday, April 5, 2011

LBNL

MPQ

PLASMON-X

World-wide effort aimed at FEL using laser accelerator

Taiwan

Spontaneous emission 17 nm (@ MPQ-Garching)

Main challenges:➡ Beam quality: ➡ Energy spread, emittance, peak current

➡ Seeding for temporal coherence

BPM

Capillary ICT

Quads

Magnetic Spectrometer

Undulator

XUV spectrometerICT

OTRFoil

Laser Plasma Accelerator

Tuesday, April 5, 2011

Beam brightness studies are underway

Transition radiation from beam exiting plasma – coherent THz

§ Bunch duration:§ Fluctuational interferometry (Catravas et al., PRL 1999)

§ THz radiation -- upper bound (van Tilborg et al., PRL2006)

§ Coherent OTR -- mm scale distance from LPA (Glinec et al., PRL2007, Lundh et al., NP 2011)

Coherent optical radiation

Single shot X-Ray Image

§ Emittance & energy spread:§ Betatron source size and e-beam divergence (Plateau et

al., in preparation)

§ Slice energy spread via coherent OTR (COTR) -- meter scale distance from LPA (Lin et al., submitted)

§ Undulator based diagnostic

Tuesday, April 5, 2011

§ K = γ kβ rβ ∝ γ1/2 ne1/2 rβ

Ultra-low emittance of electron beam is deduced from x-rays produced by electrons inside LPA

Single shot X-Ray Image

Normalized emittance < 0.2 micron1 G. Plateau et al., in preparation (2011)2 E. Esarey et al., PRE 65 056505 (2002)3 M. Chen et al., In preparation (2011)

Electron beam spectrum

X-ray spectrum

Tuesday, April 5, 2011

30

Undulator radiation experiment: towards an FEL powered by LPA

BPM

Capillary ICT

Quads

Magnetic Spectrometer

Lanex

Undulator

Blazing IncidenceGrating

X-ray CCDICT

OTRFoil

Single shot energy spread and emittance diagnostic

Single-shot XUV SpectrometerBPM & OTRTHUNDER Undulator

outer diameter:!35 mm"

clear aperture: !

5 mm"

25 and 50 mm"

Tuesday, April 5, 2011

Experiments on seeding the FEL being planned

Benefits of HHG seeding FEL• Reach saturation at shorter distance• Stabilize output flux• Improve temporal coherence

Tuesday, April 5, 2011

Laser-plasma accelerator driven soft x-ray FEL at 1 nm

LPA electron beam:Beam energy 7.7 GeV Peak current 30 kABunch length 20 fsRelative energy spread 10-3

Normalized emittance 1 micronAv

erag

e fu

ndam

enta

l pow

er <

P>

(W)

Undulator length (m)

Ginger simulation

Laser beam

7.7 GeV, electron beam

FEL output

~ m

plasma channel1017 cm-3

40 J, 100 fs1018 W/cm2

1 Hz

Undulator ~ 15 m

λ=1 nm~1013 photons/pulse

Requires nominal 10 GeV LPA

Tuesday, April 5, 2011

33

BELLA Facility: state-of-the-art PW-laser for laser accelerator science

BELLA LaserControl Room Gowning Room

Compressor

Plasma source 10˚ Off-axis parabolaHigh power diagnostic

Tuesday, April 5, 2011

BELLA is expected to be available by summer 2012

34

BELLA Laser at THALES

“Front end (50 TW, 10 Hz) >14 J GAIA pump laser

Tuesday, April 5, 2011

35

BELLA laser opens significant opportunities

< 100 cm1000 TW40 fs

e- beam

~10 GeVLaser

• Light source development- 10 GeV Module as driver for 1 nm seeded soft x-ray FEL

2013 Experiments

Lorentz boosted frame simulationFull 1 m BELLA stage -- major advance

Courtesy of J.-L. Vay

W. Leemans et al., AAC2010 Proceedings

Tuesday, April 5, 2011

• Basic concept of laser plasma acceleration

• Controlling particle injection

• LPA as building block for a hyperspectral source

• Laser technology and investments

• Conclusion

OUTLINE

Tuesday, April 5, 2011

Concepts are being explored towards a Laser Plasma Linear Collider

§ Injector techniques

§ Staging techniques

§ Bunch properties

§ 10 GeV module

§ Collisions, synchrotron losses, efficiency, etcW. Leemans and E. Esarey, Physics Today (2009); C.B. Schroeder et al., PRST-AB 2010

Tuesday, April 5, 2011

Laser plasma

accelerator (today)

Collider(>20 yrs)

Lightsource(10 yrs)

Security Apps

(5-10 yrs)

Medical(10 yrs)

Laser development

Tuesday, April 5, 2011

Light sources

Laser requirements:

Peak power vs. Rep rate

1 MHz1 kHz1 Hz

100 PW

1 PW

1 TW

BELLA

TREX

Godzilla

CollidersMedical Apps

Laser based non-linear QED

40 W

4 kW

400 kW

Tuesday, April 5, 2011

Novel  lasers  and  materials  are  being  developed

‣ Amplifiers

-­‐ Rods,  slabs,  discs  and  fibers

40

‣ Materials  for  amplifiers,  mirrors  and  compressor  gra5ngs

-­‐ Ceramics  and  diamond  

-­‐ Nano-­‐fabricated  structures

‣ Diodes  and  small  quantum  defect  materialsTuesday, April 5, 2011

Laser-­‐plasma  accelerator  based  hyperspectral  user  facility

Compact,  intrinsically  synchronized  hyperspectral  source  covering  THz  to  gamma  rays  using  laser  based  sources  and  laser  plasma  accelerators  (LPA)

•  Builds  on  know-­‐how  and  technology  for  new  accelerators•  New  paradigm:  single  laser  system  driving  mulFple  tunable  compact  LPAs

Laser  driver Undulator

plasma channel

electron beam

~3-­‐100  cm

Undulator ~3-­‐100  cm

Undulator ~3-­‐100  cm

XUV||X-­‐rays

25-­‐35  m

Seeding

Tuesday, April 5, 2011

42

Major investments- Example: European Extreme Light Infrastructure- Four pillars (three funded at 790Meuro):1. attosecond and XUV science: Hungary2. High-brightness x-ray and particle sources: Czech Republic3. Photo-nuclear science, transmutation,...: Romania4. Ultra-high intensity science (non-lin QED): ???

Tuesday, April 5, 2011

43Courtesy of K. Osvay

Funded at 790 Meuro

Tuesday, April 5, 2011

Conclusion‣ Laser  plasma  accelerators  are  reaching  AMO  relevant  performance

-­‐ High  peak  field  THz  for  non-­‐linear  carrier  dynamics,  superconducFng  R&D

-­‐ Direct  e-­‐beam  based  magneFc  switching

-­‐ FEL  proof-­‐of-­‐principle  experiments,  including  seeding  +  user  experiments

‣ In  5-­‐10  years:  BELLA  style  technology  based  user  facility  for  peak  power  hyperspectral  source  apps

‣ User  apps  will  require  investment  in  high  average  power  laser  technology

-­‐ Mul5-­‐kW  100  TW  to  PetawaN-­‐class  lasers

-­‐ Sustained,  long  range  R&D  needed  with  major  investment  in  high  peak  power  lasers,  novel  materials  and  fiber  Fming  technology  &  partner  with  universiFes,  labs  and  industry

-­‐ Major  investments  being  made  overseas

‣ Exci5ng  5mes  to  work  on  accelerator  and  laser  driven  science44

Tuesday, April 5, 2011

Team, collaborators and fundingPrimary  collaboratorsPostdocs

K.  Nakamura  (E)M.  Chen  (S)C.  BenedeR  (S+T)T.  Sokollik  (E)

StudentsM.  Bakeman  (PhD)  -­‐-­‐  gradua+ng  2011D.  Bakker  (MSc)C.  Koschitzki  (PhD)C.  Lin  (PhD)  -­‐-­‐  gradua+ng  2011R.  MiYal  (PhD)D.  MiYelberger  (PhD)G.  Plateau  (PhD)  -­‐-­‐  gradua+ng  2011B.  Shaw  (PhD)  S.  Shiraishi  (PhD)L.  Yu  (PhD)

StaffS.  Bulanov  (T,  UCB)E.  Esarey  (T)C.  Geddes  (S+E)A.  Gonsalves  (E)W.  Leemans  (E)N.  Matlis  (E)C.  Schroeder  (T)C.  Toth  (E)J.  van  Tilborg  (E)

Eng/TechsR.  DuarteZ.  EisentrautA.  MaganaS.  FournierD.  MunsonK.  SihlerD.  SyversrudN.  Ybarrolaza

•  LBNL:  M.  BaYaglia,  W.  Byrne,  J.  Byrd,  W.  Fawley,  K.  Robinson,  D.  Rodgers,  R.  Donahue,  Al  Smith,  R.  Ryne,  P.  Colella,  J.  Johnson•  TechX-­‐Corp:  J.  Cary,  D.  Bruhwiler,  et  al.  SciDAC  team•  Oxford  Univ.:  S.  Hooker  et  al.•  DESY:  F.  Gruener,  J.  Osterhoff  et  al.•  LOA:  O.  Albert•  GSI:  T.  Stoehlker,  D.  Thorn•  Trieste:  F.  Parmigiani

BELLA  Project  Team  membersS.  ZimmermannJ.  CoyneD.  LockhartG.  SanenS.  Walker-­‐LamK.  Barat

Tuesday, April 5, 2011

top related