lecture 13 v2 - mycourses.aalto.fi

Post on 13-Jan-2022

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

ELEC-E4130Lecture 13: Multilayer (Stratified Media)

One layer, normal incidence

ELEC-E4130 / Taylor

Nov. 01, 2021

ELEC-E4130 / TaylorLecture 13

Multiple layers mirrors

Tune layer permittivity and thickness to enhance constructive interference of multiple reflections at the air dielectric interface

Dielectric surface quality superior to metallic surface quality

ELEC-E4130 / TaylorLecture 13

Multiple layer filters

Tune layer permittivity and thickness to enhance destructive interference of multiple reflections at input the air-dielectric interface

This enhances constructive interference at the output dielectric-air interface

Sometimes impossible to suppress natural periodic behavior

ELEC-E4130 / TaylorLecture 13

Angle dependent behavior

Transmission and reflection are defined by steady state constructive and destructive interference

Interference controlled by optical path length within the dielectric

Optical path is increased going from normal to obliques incidence angle

ELEC-E4130 / TaylorLecture 13

Single interfaceAirHalf space

DielectricHalf space

E

ΓE

E

ΓE

𝜺𝒓𝟏

ELEC-E4130 / TaylorLecture 13

Finite thickness layer AirHalf space

DielectricHalf space

Layer 1

𝜺𝒓𝟏 𝜺𝒓𝟐

E

ΓE

E

ΓE

ℓ𝟏

ELEC-E4130 / TaylorLecture 13

Two layersAirHalf space

DielectricHalf space

Layer 1 Layer 2

𝜺𝒓𝟏 𝜺𝒓𝟐 𝜺𝒓𝟐

E

ΓE

E

ΓE

ℓ𝟏 ℓ𝟐

ELEC-E4130 / TaylorLecture 13

N LayersAirHalf space

DielectricHalf space

Layer 1 Layer 2 Layer N

𝜺𝒓𝟏 𝜺𝒓𝟐 𝜺𝒓𝐍

E

ΓE

E

ΓE

ℓ𝟏 ℓ𝟐 ℓ𝑵

ELEC-E4130 / TaylorLecture 13

Today: Normal incidence, single layerAirHalf space

DielectricHalf space

Layer 1

𝜺𝒓𝟏 𝜺𝒓𝟐

E

ΓE

Γ𝜌 𝜌 𝑒 ℓ

1 𝜌 𝜌 𝑒 ℓ

ELEC-E4130 / TaylorLecture 13

Field relations

E z E e E e E z E z

H z1η E e E e

1η E z E z

E z12 E z ηH z

E z E e

E z E e

E z12 E z ηH z

Total E-field

Total H-field

Forward traveling E-field

Reverse traveling E-field

Algebra

E zH z

1 1η η

E zE z

E zE z

1 η1 η

E zH z

EH

1 1η η

EE

EE

1 η1 η

EH

Matrix vector Multiplication

Suppressz-dep.

Right hand rule

E

E

Forward E-field @ z = 0

Reverse E-field @ z = 0

ELEC-E4130 / TaylorLecture 13

Wave impedance and reflection

Z zE zH z

EH

E E1η E E

η1 E

E

1 EE

η1 Γ1 Γ

z-dependent Wave impedance

Γ zE zE z

EE

12 E z ηH z12 E z ηH z

EH ηEH η

Z ηZ η

z-dependent Reflection coefficientSummarize

Γ z𝑍 z η𝑍 z η

Z z η1 Γ z1 Γ z

ELEC-E4130 / TaylorLecture 13

Propagation of reflection coefficient

Γ zE zE z

E eE e

EE e Γ 0 e

The reflection coefficient at any point along z is the reflection coefficient at z = 0 modified by twice the propagation phase kz

Reflection coefficient magnitude is unchanged Only reflection coefficient phase is modified

ELEC-E4130 / TaylorLecture 13

Propagation matrices: two points on z-axis

z

E E

E 𝐻

E E

E 𝐻

ℓz2z1

E e ℓE

E e ℓE

E e ℓE

E e ℓE

“Reverse” propagation

𝛈

“Forward” propagation “Reverse” propagation

“Forward” propagation

ELEC-E4130 / TaylorLecture 13

Propagation matrices: two points on z-axis

z

E E

E 𝐻

E E

E 𝐻

ℓz2z1

𝛈

EE

e ℓ 00 e ℓ

EE Γ

EE

E eE e

Γ e

ELEC-E4130 / TaylorLecture 13

Propagation matrices: two points on z-axis

z

E E

E 𝐻

E E

E 𝐻

ℓz2z1

𝛈

EH

1 1η η

EE

1 1η η

e ℓ 00 e ℓ

EE

EH

1 1η η

e ℓ 00 e ℓ

1 η1 η

EH

ELEC-E4130 / TaylorLecture 13

Matching matrices across interfaces

η η

E

E

E

E

Total fields

η η

E

E ρE

E τE

+ traveling fields

η η

E

- traveling fields

ρ, τ ρ , τ ρ, τ ρ , τ ρ, τ ρ , τ

E ρ E

E τ E

E E E

H H H

E E E

H H H

Total fields

BoundaryConditions

E E

H H

Lossless dielectric No free charge TEM wave at normal incidence All fields tangential

Tangential field continuity

ELEC-E4130 / TaylorLecture 13

Matching matrices across interfaces

η η

E

E

E

E

Total fields

η η

E

E ρE

E τE

+ traveling fields

η η

E

- traveling fields

ρ, τ ρ , τ ρ, τ ρ , τ ρ, τ ρ , τ

E ρ E

E τ E

EE

1τ1 ρρ 1

EE

EE

1 ρρ 1

EE

E E E E

H H H H BoundaryConditions

ELEC-E4130 / TaylorLecture 13

Matching matrices across interfaces

η η

E

E

E

E

Total fields

η η

E

E ρE

E τE

+ traveling fields

η η

E

- traveling fields

ρ, τ ρ , τ ρ, τ ρ , τ ρ, τ ρ , τ

E ρ E

E τ E

ρη ηη η

τ2ηη η

𝛈 → 𝛈

ρη ηη η

τ2ηη η

𝛈 → 𝛈 Relations

τ 1 ρ

τ 1 ρ

ρ ρ

ττ 1 ρ

ELEC-E4130 / TaylorLecture 13

Matching matrices across interfaces

η η

E

E

E

E

Total fields

η η

E

E ρE

E τE

+ traveling fields

η η

E

- traveling fields

ρ, τ ρ , τ ρ, τ ρ , τ ρ, τ ρ , τ

E ρ E

E τ E

Impedance continuity

ZEH

EH Z η

1 Γ1 Γ η

1 Γ1 Γ

Slide 12

Algebra

Γρ Γ1 ρΓ

Γρ Γ1 ρ Γ

ELEC-E4130 / TaylorLecture 13

What if there only an incident field from left?

η η

E

E ρE

E τE

+ traveling fields

ρ, τ ρ , τ

E 0

ΓEE 0

Z η1 01 0 η

Z Z η

Γρ 01 ρ0 ρ

EE

1τ1 ρρ 1

E0

E ρE

Plug it in

E τE

solve This is the final condition for the dielectric slab Once energy enters the half space it does not

reflect back

ELEC-E4130 / TaylorLecture 13

Single Dielectric Slab

η

E

E

ρ , τ

η k η

E

E

E

E

E

ρ , τ

ℓ𝟏Interface 1 Interface 2

Z ZΓ Γ Γ Γ

ρη ηη η

τ 1 ρ

ρη ηη η

τ 1 ρ

Half space of 𝜂 and half space of 𝜂 separated by a slab of dielectric, ℓ𝟏 thick with 𝜂

Field incident from the right

Find total reflection: Γ

ELEC-E4130 / TaylorLecture 13

Reflection coefficient propagation

η

E

E

ρ , τ

η k η

E

E

E

E

E

ρ , τ

ℓ𝟏Interface 1 Interface 2

Z ZΓ Γ Γ Γ

Γρ Γ1 ρ Γ

From slide 19

Γ Γ e ℓFrom slide 14

Γρ Γ e ℓ

1 ρ Γ e ℓ

Γ ρ

From slide 20

Γρ ρ e ℓ

1 ρ ρ e ℓ

ELEC-E4130 / TaylorLecture 13

Matching and propagation matrices (1/2)

η

E

E

ρ , τ

η k η

E

E

E

E

E

ρ , τ

ℓ𝟏Interface 1 Interface 2

Z ZΓ Γ Γ Γ

From slide 17

EE

1 ρρ 1

EE

From slide 14

EE

1 ρρ 1

e ℓ 00 e ℓ

EE

From slide 17

EE

1 ρρ 1

e ℓ 00 e ℓ

1 ρρ 1

EE

ELEC-E4130 / TaylorLecture 13

Matching and propagation matrices (2/2)

η

E

E

ρ , τ

η k η

E

E

E

E

E

ρ , τ

ℓ𝟏Interface 1 Interface 2

Z ZΓ Γ Γ Γ

From slide 20: 𝐄𝟐 𝟎EE

1 ρρ 1

e ℓ 00 e ℓ

1 ρρ 1

E0

Multiply through

Ee ℓ

τ τ 1 ρ ρ e ℓ E

Ee ℓ

τ τ ρ ρ e ℓ Eratio

ΓEE

ρ ρ e ℓ

1 ρ ρ e ℓ

ELEC-E4130 / TaylorLecture 13

Transmission

η

E

E

ρ , τ

η k η

E

E

E

E

E

ρ , τ

ℓ𝟏Interface 1 Interface 2

Z ZΓ Γ Γ Γ

From slide 21: 𝐄𝟐 𝟎EE

1 ρρ 1

e ℓ 00 e ℓ

1 ρρ 1

E0

TEE

τ τ e ℓ

1 ρ ρ e ℓ

Ee ℓ

τ τ 1 ρ ρ e ℓ E

ELEC-E4130 / TaylorLecture 13

Conclusions and next time Boundary conditions (field continuities) allow for a solution to the steady state time

harmonic total fields E+(z), E−(z), and Γ(z) have simple propagation matrices but complicated relations

across the interface E(z), E(z), and Z(z) have complicated propagation matrices but simple relations

across the interface The matrix from provides a natural form for recursion and enables solution of the total

transmitted field Next time we’ll Solve for the reflection via geometric series (ray tracing) Extrapolate to multiple layers Explore oblique incidence angle

top related