lecture 2...lecture 2 current status of oscillation physics, part ii: solar neutrino experiments...

Post on 23-Sep-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

 Lecture 2

Current status of oscillation physics, part II:     Solar neutrino experiments     Reactor neutrino experiments     Short baseline experimentsWhat's next for oscillation physics: 13

     Reactor experiments     Long baseline experiments

 The Three Signals SOLAR NEUTRINOS

ATMOSPHERIC NEUTRINOS

ACCELERATOR NEUTRINOS

Electron neutrinos from the Sun are           disappearing

Muon neutrinos created in cosmic ray showers    are disappearing on their way through the Earth

Distance ~ 10­13000 km,  Energy ~ 0.1­100 GeV

Electron antineutrinos appearing in a beam  of muon antineutrinos at LSND

Distance ~ 108 km,  Energy ~ 0.1­15 MeV

Distance ~ 30 m,  Energy ~  30­50 MeV

x

e

e x

Where we ended up last time: atmospheric 's

­ Super­K has clean, high statistics atmospheric 

 disappearance signal; good evidence it's  

­ K2K confirmed the oscillationhypothesis with disappearanceof beam neutrinos

­ MINOS now has highestprecision m2 measurement

­ Soon:  CNGS experimentsto explicitly see  appearance

e x

Next, zoom in on solar neutrinos

Solar Neutrinos: the Classic Puzzle

J. Bahcall

Electron flavor neutrinos generated in solar fusion;    spectrum is well understood from weak physics

D. Hahn, Nu2008

Homestake Chlorine Radiochemical Detector

νe + 37Cl → 37Ar + e­ 600 tons of cleaning fluid

Extract atoms of Ar every few months    and count decays (35 day half life):  ~ 12 per month!

Threshold: 0.81 MeV

Shortfall: saw about 1/3 of the expected neutrinos1 SNU=interaction/s/1036 atoms

Gallium radiochemical experimentsνe + 71Ga → 71Ge + e­

Threshold: 0.23 MeV, 11 day half­lifeSensitive to pp neutrinos

The SAGE Experiment

Based on liquid gallium 50 tons

1990­present

Caucasus mountains, Russia

Based on

Gallex/GNO (Gallium Neutrino Observatory) at LNGS, Italy: 1991­2006

Used gallium chloride  (30 tons of Ga)

Gallium solar neutrino results

SAGE GALLEX

Again clear shortfall: about 60% of standard  solar model expectation (pp neutrinos) 

D. Hahn, Nu2008

Water Cherenkov Detectors  Observe elastic scattering  of ~MeV solar ν's

Pointto Sun!

e, xe−e,xe−

Kamiokande­II, 1991

E>~7 MeV

40% ofexpectation

The classic puzzle,  end of the 1990's

Experiments:  Cl, Ga, H2O  have different  thresholds

Energy­dependent suppressionNo known solarmodel could explain: is it  νe → ν

?

The Mikheyev­Smirnov­Wolfenstein (MSW) Effect              a.k.a.  "Matter Effects"

Extra forward scattering amplitude modifies the oscillation probability, which depends on: 

νe

νe

Z0

e,q

νx

e,q

νx

vs.extra energy √2 GFNe for νe NC only for νµ,τ

vvacuum osc. parametersmatter density profile

vs.

}

log(∆m2)

tan2θ

"Small  Mixing  Angle"

"Large  Mixing  Angle"

"Low"

"Vacuum"   (or "Just So")

Mattereffectsin Sun apply

"Classic" allowed parameters         for solar neutrino oscillations

The "Smoking Guns":  oscillation signatures

● Day/night effect:  regeneration of νe   in Earth due to matter effect  enhances  νe flux  at night for some parameters

● Seasonal variation:  variation with L for vacuum oscillation   (beyond 7% expected from Earth orbit)

● Spectral distortion

ν2

νe 

Looking for smoking guns...

Super­K solar neutrino data: suppression observed

SK I

SK I

Recoil energy spectrum

electron energy

Day/night asymmetry

Seasonal variation

No strong effects(besides suppression) observed at Super­Kconstrain parameters 

Large mixing favored by SK alone... 

But there's another smoking gun...

● Neutral Current Excess: direct evidence for                                          flavor transformation 

● Day/night effect:  regeneration of νe   in Earth due to matter effect  enhances  νe flux  at night for some parameters

● Seasonal variation: variation with L   (beyond 7% expected from Earth orbit)

No strongeffects observedat Super­K (constrain parameters) 

● Spectral distortion

The Sudbury Neutrino Observatory

1 kton H2O

CC

NC

Elasticscattering(CC, NC)

1.7 kton D2O

Cherenkov light from e­

Neutron detection

νe+ d → p + p + e­

νx+ d → νx + p + n

νe,x+ e­ → νe,x+ e­

Sudbury, Canada

SNO's unique feature: NC detection

NCνx+ d → νx + p + n

● Phase I: capture on d (D2O)● Phase II: capture on Cl (salt, NaCl)● Phase III: neutron detectors (NCD)

Tag NC via detection of neutron

Oscillation information from SNO

Also look for distortion of CC spectrum         night enhancement

φES=φ(νe) + 0.15φ(νµ,τ

φNC= φ(νe) + φ(νµ,τ

) ~ total flux 

CC

NC

 Elastic scattering  (CC, NC)

νe+ d → p + p + e­

νx+ d → νx + p + n

νe,x+ e­ → νe,x+ e­

specifically tags νe

flavor­blind ⇒ measure                         total active flux

mixture of νe and all   with known ratio

φCC

=φ(νe)

 component

Phase I SNO Results, 2002

Fit data for CC, NC, ES componentscosθ

Conclusion: νe's are oscillating into active ν's!         The solar neutrino problem solved!   

φES=φ(νe) + 0.15φ(νµ,τ

)  φNC= φ(νe) + φ(ν

µ,τ) ~ total flux 

SNO turned off at the end of 2006

Phase III with NCDs (Neutral Current Detectors)

Latest preliminary SNO results H. Robertson, Nu2008

 NC 

 CC 

 ES 

Preliminary SNO NCD results H. Robertson, Nu2008

Final analyses underway

Look at LMAparameter spaceusing reactor antineutrinos

Mozumi, Japan

Sum of reactorfluxes from Japan, KoreaE

~few MeV, L~180 km

The KamLAND experiment

P. Decowski, Nu2008

Inverse Beta Decay  (CC)νe + p →   e+ + n

Exploit delayed (~180 µs)  coincidence of n + p → d + γ   as tag against radiactive background 

γ

γγe+

n2.2 MeV

0.511 MeV

0.511 MeV

νe 

SCINTILLATION DETECTORSLiquid scintillator CnH2n volume surrounded by photomultipliers­ high light output­ very low energy    threshold possible­ little directional capability   (light is isotropic)

Emeas=Ee−0.8 MeV

KamLAND: 1 kton scintillator

First KamLAND result (2003): observed suppression     of reactor νe's selects the LMA region

LMAexpectation

Latest KamLAND spectrum

P. Decowski, Nu2008

KamLAND L/E Results

P. Decowski, Nu2008

Overall fit to the solar neutrino data

KamLANDnarrows them2 range

Global fit shows thatmixing isnot maximal

Next for KamLAND: 'KamLAND low­bg'

Purify the scintillatorto remove radioactivebackgroundfor sensitivity tosolar  elasticscattering background

 Borexino 

LowNU

Gran Sasso, Italy

● 300 ton    scintillator● very low    radioactivity● <MeV threshold

C. Galbiati, Nu2008

New results from Borexino: 7Be flux, CNO/pp limits

Borexino data can constrain exotic models

Next for solar neutrinos in large detectors:

­ More from Super­K and Borexino­ KamLAND low­bg­ SNO+:  SNO acrylic vessel filled                  with scintillator       (more tomorrow)­ LENA (Europe),    HSD (US), ...

 Ultra­low energy  (sub MeV)    real­time solar pp ν detectors

­ can be relatively small (~10 tons)    thanks to huge pp flux ­ real­time energy resolution­ various materials and technologies­ must be ultra­clean to defeat radioactive background   

The Frontier:

 Vast pp neutrino flux!

K. Abe, TAUP 2007

XMASS:liquid xenon

CLEAN/DEAP: liquid neon (argon)

LENS: indium­loaded            scintillator

Summary of solar ν's

Solar ν's

­ Clean, high statistics     signals in many detectors:     entering precision      measurement era­ SNO confirms oscillation to   active neutrinos with NC signal­ KamLAND reactor neutrino  disappearance confirms LMA­ New: Borexino sees Be­7    at low energy

­ Coming up: SNO+,                         KamLAND­lowbg­ Frontier: realtime pp 's      XMASS, CLEAN, LENS, ...

Now zoom in on LSND parameter space

LSND e

The LSND Experiment at Los AlamosLiquid Scintillator Neutrino Detector

ν beam:  p + target → π+

                                       ↳  µ+νµ

                                              ↳  e+νµνe 

30 m baseline, 167 tons scintillator

π decay at rest:   20­60 MeV ν

µ 

 tag with correlated  signals

(No longer see 20­200 MeV νµ →νe for decay in flight π+)  

Look for νµ νe  via 

νe + p  e+ + n                                         ↳  n + p  d + γ

 See excess of 87.9 ± 22.4 ± 6.0 beam νe  events  

The KARMEN experiment     at RALKarlsruhe Rutherford   Medium Energy Neutrino Experiment

17.5 m from ν source56 tons of scintillator

ISIS source: stopped π+  source but pulsed (50 Hz) ⇒     use time structure to: 

● separate νµ (π decay)  from νe, νµ

(2.2  µs µ decay) ● reduce cosmic ray bg 

Karmen 2: 1997­2000

Expect: 12.3 ± 0.6  bg,        see 11 candidates

 NO OSCILLATION      SIGNAL

LSNDand KARMENresults KARMEN

 rules out some of LSND's allowed region, but not   all

MiniBooNE Booster Neutrino Experiment at Fermilab

0.8 kton of mineral oilE

ν~ 1 GeV from 8 GeV booster

L~ 500 m 

 Test νµ → νe  at 

  same L/E as LSND L↑, E↑ : different systematics 

e, µ, π0 PID with scintillator, Ch. light       + spectrum measurement 

MiniBooNE Results: April 2007

Some excess  at low energy: currently under study for     possible detector effects or backgrounds

Interpreting as two­flavor oscillation:    rules out LSND

 No evidence of energy­dependent  excess of e  !

S. Brice, Nu2008

Now running with antineutrinos

Micro­BOONE: liquid argon  TPC to study cross­sections   in appropriate energy range

Possible future experiments that may   help address the issue:

H. Ray, Nu2008

Experiment at the Spallation Neutron Source:    LSND­like beam with Mini­BooNE­like detector

LSND e

Summary of LSND parameter space

Gone? Still weird stuff?

We'll ignoreit for now!

What Do We Know About the Mixing Parameters?

∆m223, θ23

∆m212, θ12

 Two verified examples   of two­flavor mixing

P(fg)=sin2 2sin2 1.27m2LE

Atmospheric/beam

Solar/reactor

Allowed parameters getting squeezed down in next generation of experiments

2 mixing angles,   2 ∆m2

Beyond 2­flavor: explore neutrino  mixing in a 3­flavor context     

But there's more than just squeezing down  2­flavor parameters ...

­K

What Do We Know About the Mixing Parameters?

e

=Ue1 Ue2 Ue3

U1 U

2 U3

U1 U

2 U31

2

3

∆m223, θ23

∆m212, θ12

Described by   ­ 2 ∆m2

   ­ 3 mixing angles (θ23,θ12,θ13)      ­ CP­violating phase δ

 Remaining Questions  (that can be answered by   oscillation experiments)

What is the mass hierarchy?

What do we still not know?

or∆m12

∆m232 

{{ ∆m12

∆m232 

{

{"Normal" hierarchy "Inverted" hierarchy

(solar)

(atm.)

   ­ 2 ∆m2

   ­ 3 mixing angles (θ23,θ12,θ13)      ­ CP­violating phase δ

maximal?

MNSmixingmatrix

atmospheric solar

1

2

3e

µ

τ1

2

3

τ1

2

3

e

µ τ1

2

3

τ

?????? atmosphericsolar

|f>=∑i=1

N

Ufi |i>

U=1 0 00 C23 S23

0 −S23 C23

C13 0 S13e−i

0 1 0−S13e

i 0 C13C12 S12 0−S12 C12 00 0 1

First, θ13: 'the twist in the middle'

 1­P(νe→νe) ~ sin22θ13

sin2(∆m213L/4E) 

Getting at θ13 experimentally: look for        disappearance of reactor νe  (few MeV,

    ~ km)

 Current best limits for θ13 from CHOOZ 

νe → νx

⇒ disappearance  amplitude < 5­10%

New experiments(Double CHOOZ,Daya Bay) are tryingto go further

 Matter­enhanced ν

µ → νe   oscillation 

 probability for large  θ

13

 Expect upgoing  multi­GeV  νe excess: not seen 

νe   enhancement/ deficit

  for expected SK events 

Can look for signatures of non­zero θ13

in SK atmospheric nus 

(Plots by R. Wendell)

Best knowledge so far  about 13:

It's small angle, giving small modulation!

 Excluded by lack of disappearance  of reactor antinus

 Allowed:  consistent  with atmospheric nus 

Need <1% systematics!

⇒ resolve ambiguities?

 Cancel systematics  w/ 2 detectors 

Next generation of proposed experiments:  improved reactor disappearance search

 1­P(νe→νe) ~ sin22θ13

sin2(∆m213L/4E) 

PNew reactor experiments

 Double CHOOZ,  France   

 Daya Bay, China  

 RENO, South Korea   

T. Lasserre, Nu2008

Double Chooz (France)

10 m3 ofGd­loaded scintillator

∑ E~8 MeV

n + Gd → Gd* 

    →  Gd + γ  

Double Chooz sensitivity to 13

T. Lasserre, Nu2008start mid­2009

Daya Bay, China C. White, Nu2008

Daya Bay detectors (8 total)

Daya Bay sensitivity to 13

start mid­2010

One more: RENO in Korea

S. B. Kim

RENO sensitivity to 13

Start ~2010

Another experimental approach: 13signature: look for small νe appearance                    in a ν

µ beam 

Hard to measure... it's a small modulation!   Need good statistics, clean sample

For ∆m232  >> ∆m12

2 and  Eν~ L∆m23

2 (in vacuum):

P(νµ→νe) = sin22θ13

sin2θ23

sin2(∆m223L/4E)

~ 1/2

atmospheric­likewiggling

small modulation

νµ → ν

µ,τ

νe

Future Long Baseline Beam Projects

 T2K: "Tokai to Kamioka"   NOνA  at NuMi

Existing detector: Super­K295 km, <1 GeV 0.75 MW beam                           (30 times K2K)Water Cherenkov detector

2009+

Existing beam: NuMi810 km, few GeV beamScintillator detector

Aim for: ~1%  on 2­3 mixing, factor of ~10­20 for13 mixing

Detectors will be a few degrees off beam axis

Why are  the detectors a few degrees off of the beam axis?

 Off­axis,  neutrino energy becomes relatively independent  of π energy

2­body pion decay kinematicsBarenboim et al.hep­ex/0206025

Off­Axis Neutrino Beams

Good forbackground reduction and oscillation fits

Although you get  some reduction in flux, get more sharply peaked neutrino energies  

OA3°

OA0°OA2°

OA2.5°

September, 2005

 T2K: "Tokai to Kamioka" ●  Super­K III at 295 km● J­PARC 50 GeV PS● <1 GeV 0.75 MW ν beam● 2.5 deg. off axis ● will turn on 2009

Electron appearance signal in SK

Intrinsic beam νe contamination

NC single pionsπ0→γγ

 νµ mis­id

­asymmetric decay­both γ boosted forward­one γ near wall

Backgrounds

Expect ~1600  events/year at SK

T2K Near Detectors

Off­axisdetector complexat 280 m tocharacterizeflux forunderstandingof backgroundsat Super­K

T2K sensitivity     to 13

I. Kato, Nu2008

NOA

R. Ray, Nu2008

On the US side:

­15 kt scintillator­ Includes NuMI    upgrade from   400 to 700 kW­ 810 km baseline

Liquid scintillator in long cells  + optical fiber + avalanche photodiode

R. Ray, Nu2008

NOA sensitivity     to 13

Summary of "beyond­2­flavor" oscillation physicsObservable

Signature Next steps *

Next generationbeams (T2K, NOA) 

θ13 Tiny appearance of νe in a beam of ν

µ

Disappearance of νe Reactors

Next:  what will be needed to go    after mass hierarchy, CP violation 

 Lecture 3

Finish the oscillation story: CP violation                                                mass hierarchy                                                farther future projects                                                supernova neutrinosKinematic neutrino mass searchesNeutrinoless double beta decayMiscellaneous topics, as time permits

top related