let’s stick together: unravelling the complexity of ‘pd...

Post on 25-Apr-2020

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Let’s stick together: unravelling the complexity of ‘Pd(OAc)2’

precatalyst activation of relevance to cross-coupling chemistry

Dial-a-Molecule Annual Meeting:York 2019

RSC book: 2013

Eur. J. Org. Chem.

2009, 4011.

Chem. Rev. 2010, 110, 824.

Org. Biomol. Chem.

2008, 6, 3645.

Angew. Chem. 2015,

54, 10415. J. Am. Chem. Soc.

2017, 139, 7117.

React. Chem. Eng.

2019, 4, 122.

Two major reviews coming in 2019/20: 1) “Coupling reaction and C-H activation by metal nanoparticles” in ‘Nanoparticles in Catalysis’ (Springer); 2) “Metal Complexes as Catalysts for Cross-Coupling Reactions” in Comprehensive Coordination Chemistry III (Elsevier). 1

Acknowledgements

Neil Scott Dr. Josh Bray Dr. Mark Ford

Fairlamb group 2019 2

Pd catalysis100s of different reaction types: Cross-coupling, Homo-coupling, Polymerisation,

Isomerisation, Rearrangement, Cyclisation, Cycloaddition, Hydrogenation, Dehydrogenation, Reduction and Oxidation, including many tandem processes

Critical reviews from our group: Chem. Rev. 2010, 110, 824. Angew. Chem. 2015, 54, 10415.

Cross-coupling catalysis

Davis & Bradley

Functionalisations at Pd: small molecules, protein functionalisation, Pd cellular catalysis

Angew. Chem. Int. Ed.

2017, 56, 6864

3

Suzuki-Miyaura

Key papers:

Jutand et al. Chem.-Eur. J. 2011, 17, 2492–2503.

Hartwig et al. J. Am. Chem. Soc., 2011, 133, 2116–2119

Larina et al. Russ. J. Gen. Chem. 2011, 81, 1573–1574.

Thomas & Denmark, Science 2016, 352, 329–332 (critical Pd-O-B moieties are able to transfer their B-aryl groups to Pd).

Reviewed by Lennox & Lloyd-Jones, Chem. Soc. Rev. 2014, 43, 412-443.

Favour “oxo-palladium pathway”

4

Common Pd precursor complexes

Common Ligands

"Pd(OAc)2" (comes in different forms)

See later…

5

Catalyst activationFor Pd0 catalysis – typical cross-coupling reactions…

• Pd reservoir?• Pd deactivated?• Pd surface catalysis• Speciation?• Multiple catalyst

species

The Pd:L ratio: important for catalyst activation, catalytic cycle steps, and catalyst deactivation

For a detailed analysis, for aryl cyanation, see Bray, Ford & Fairlamb et al. React. Chem. Eng. 2019, 4, 122. 6

Pd(OAc)2 Pd3

Ubiquitous Pd(OAc)2 – arguably the most well used PdII precatalyst in the world!

• What do we know about “Pd(OAc)2”? Typically, two forms:

Pd3(OAc)6(NOx-free)

Carole and Colacot, Chem. Eur. J. 2016, 22, 7686 (review)

[Pd(OAc)2]n

• Implications for different forms of “Pd(OAc)2”

Carole, Bradley, Sarwar and Colacot, Org. Lett. 2015, 17, 5472.

Pd-NOx impurities: Fairlamb et al. ACIE 2015, 54, 10415; J. Am. Chem. Soc. 2017, 139, 1177;Chemical Science 2012, 3, 1656

“Pd(OAc)2” in alcoholic solvents: Bedford et al. ACIE 2015, 54, 6591; Hii et al. Catal. Sci. Technol. 2012, 2, 316. 7

Pd(OAc)2 Pd3

Why is the Pd:PPh3 ratio important? If phosphine is a reductant for PdII then the amount of phosphine at Pd0 (catalyst species) left at the end is affected.

The organic chemistry community more often than not employ a ratio of PdII:PPh3 of 1:2.

Lead references: Science 2018, 359, 429 (automation); Nature 2018, 559, 377 (machine learning)

Amatore & Jutand et al. Organometallics 1992, 11, 3009.

8

Pd3(OAc)6 ?

Scott, Ford & Fairlamb et al. Chemical Science (2019) DOI: 10.1039/C9SC01847F

For related mechanistic work on Pd(OAc)2/XPhos, see: Grimaud & Jutand et al. Chem. Eur. J. 2019, 25, 6980.

And Pd(OAc)2/SPhos, see: Bedford et al. Dalton Trans. 2019, 48, 3539. 9

In situ NMR studies

10

Density Functional Theory:

B3LYP/def2svp functional/basis set

HOMO

X-ray

31P{1H} NMR

Spe

cie

s 4

a-c

dt

tbr s

PdI complex reacts with R-X

11

'Pd/PPh3' cat. (3 mol% Pd),

n-Bu4NOH aq.,

THF, 40 oC, 4-6 h

N Br F B(OH)2

2 (1.2 eq.)1 (0.2 M)

N

3

F

0

10

20

30

40

50

60

70

80

90

100

0 60 120

180

240

300

360

420

480

Co

nve

rsio

n (%

)

Minutes

(A)

0

10

20

30

40

50

60

70

80

90

100

0

60

12

0

18

0

24

0

30

0

36

0

42

0

48

0

Co

nve

rsio

n (

%)

Minutes

(B)

0

10

20

30

40

50

60

70

80

90

100

0

60

12

0

18

0

24

0

30

0

36

0

Co

nve

rsio

n (

%)

Minutes

(C) Dinuclear PdI complex II[Pd3(OAc)6/6 PPh3)2] [Pd3(OAc)6/12 PPh3)2]

40 °C

70 °C

40 °C 40 °C

Effective Pd:PPh3

= 1:1

Effective Pd:PPh3

= 1:3

Effective Pd:PPh3

= 1:1

Effective Pd:PPh3

= 1:3

SMCCs

12

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400

Co

nve

rsio

n (%

)

Minutes

[Pd3(Br)(µ-PPh2)2(PPh3)3]Br (VIIc_Br)

[Pd3(Br)(µ-PPh2)2(PPh3)3]OAc (VIIc) +

[Pd(X/X')(N,C2-pyr)(PPh3)]2 (4a-c)

[Pd(Br)(N,C2-pyr)(PPh3)]2 (4a)

Formed in situ from reaction of

[Pd2(µ-PPh2)(µ2-OAc)(PPh3)2] with 1c

'Pd/PPh3' cat. (3 mol% Pd),

n-Bu4NOH aq.,

THF, 40 oC, 4-6 h

N Br F B(OH)2

2 (1.2 eq.)1 (0.2 M)

N

3

F

SMCCs

For catalytic competency of isolated Pd3 clusters, see: Li et al. ACS Catal. 2017, 7, 1860 (SMCC);and, Schoenebeck et al. ACIE, 2019, 58, 211 (Kumada). 13

Pd(OAc)2 Pd3

Add 2PPh3

per Pd

Add R-X(Br)

25-40 °C

14

Conclusions for Pd catalysis

Pd1 Pdn

Pd aggregation is not simply a catalyst graveyard

Common Pd precatalysts deliver catalytically

competent Pd3 clusters

Ubiquitous Pd(OAc)2 –an old story?

To be continued…

Pd3 clusters offer New opportunities for catalyst

design

Each ligand-type will reacts with Pd(OAc)2 in different ways –common catalyst species are a not guaranteed, e.g. “Pd-L”

15

top related