levapor carriers agro_chemicals

Post on 13-Apr-2017

43 Views

Category:

Environment

4 Downloads

Preview:

Click to see full reader

TRANSCRIPT

LEVAPOR – porous, adsorbing carrier for bioprocess improvement

Dr. Imre Pascik LEVAPOR GmbHwww. levapor.com Leverkusen, Germany

About us

• Innovative Organization • Fixed Film Based Process Solutions • Complex Effluent, Municipal Wastewater,

Polluted Gas • CEO Dr. Imre Pascik • 40 years of experience with Bayer AG,

Environmental Bio Technology Centre, Leverkusen

About us

• Development of innovative processes • Two Step nitrification of high Ammonia

containing effluents • Landfill Leachate Treatment • Bayer Tower Biology (Otto Award) • Degradation of toxic effluents using

Anaerobic-Aerobic Processes

What We do • Problem analysis for the treatment of high strength

industrial and municipal wastewater treatment • Define treatment goals and conceptual process

design • Development of optimal process and design

parameters with pilot tests• Manufacturing of high performance tailor made bio

carriers for the application • Process Start up

Industries We serve

• Chemicals and Pharmaceuticals• Petrochemicals and Refineries • Pulp and Paper • Coal Conversion : coke plant, coal gasification,

pyrolysis• Textile finishing and Leather manufacturers • Municipal Wastewater Treatment • Special effluents like land fill leachate and sludge

processing unit

Bio Film Technology• Biodegradation of pollutants occurs

via teamwork of microorganisms united

in sludge flocs

• Important result of research :• Some important, non-flocculating

organisms will be washed out from bioreactor, resulting reduced plant efficiency

• Solution: Biofilm technology• via immobilisation, cell growth on• solid surfaces, “carriers“ made of• plastics, sand, glass, etc.

• Target: Synthesis of biocarrier

Our REQUESTS on OPTIMAL CARRIER

• PROPERTY EFFECT

• 1. Adsorbing capacity - binding toxic pollutants - fast colonization + bio film - fast start up at high level

• 2. Porosity, high inner surface - protection of the biofilm • (high biomass content) - high space-time-yields

• 3. Fast wetting - homogenous fluidisation

• 4. Water binding - mass transport, bioactivity • 5. Proper fluidisation - lower energy consumption

Our Technology

• LEVAPOR Bio Carrier • First synthesized Bio Carrier • Porous, Flexible, Durable PU foam

impregnated with surface active pigments like activated carbon

• Due to variability of foam and pigment type and their ratios, tailor made carriers can be produced with varying properties

Our Technology

Properties

High Adsorbing Surface • 10 to 12 kg of activated

carbon per m3 of foam matrix

• PU foam surface area 2500 m2/m3

• 1000-2000 m2/g surface area of activated carbon

• Extremely high adsorbing surface

Benefits:• Reversible Adsorption• Rapid microbial colonization

and biofilm formation • Temporary adsorption of

toxic and inhibitory substances

• Subsequent biodegradation and thus regeneration of surface

Advantages • Treatment of effluents containing toxic substances • Short process start up and higher performance compared to

suspended mass based systems (100 to 300%)• Higher process stability against toxic shock loads and

fluctuations in reactor conditions • Lower Degree of Filling (12 to 15%) • Smaller foot print • Lower energy consumption for fluidization • Lower sludge production • Simpler process control

Applications• Up gradation/expansion of existing plants • Anaerobic-Aerobic treatment of high strength , slowly

bio degradable pollutants • Nitrification- de nitrification of effluents containing high

ammonia concentrations• Biological Treatment of Polluted air/gas (BTF)• Biofilm reactor MBBR/IFAS for the treatment of

industrial and municipal wastewater • Treatment of hyper saline effluents containing solvents • Treatment of land fill leachate and groundwater

containing PAHs.

Agro Chemicals, Middle East• Pesticides Manufacturing Agrochemicals industries • A Wide variety of agro chemicals manufactured at site due

to hectic crop cycle • Effluents Containing :• Biologically active biocides and often inhibiting raw

chemicals , active ingredients and their by products • Solvents like methanol, aromates, dicholoromethane,

methyl-isobutyl-ketone(MIBK) from the formulations • Higher Salinity

A typical Effluent Characteristics

• Up to 12,000 mg/lit COD comprising solvents in it • Up to 600 mg/lit inhibitory , active ingredients and their by

products • 500 to 800 mg/lit Total Kjehldahl Nitrogen (TKN) containing

mostly Organic-N associated with slowly hydrolysable s-triazine.

• Up to 1500 mg/lit Sulfates (SO4-) • 10,000 to 25,000 mg/lit Salt Concentration as NaCl

The Problem • Adversely affect the environment• Presence of high amount of biodegradable solvents make wet

oxidation processes costly and thus biological degradation would be cost effective alternative

• Higher concentrations of inhibitory substances lower the COD removal efficiency of suspended growth only reactors

• COD removal also affected due to high fluctuations of load• Severe nitrification inhibition due to fluctuating COD removal

efficiency• Aerobic only treatment increases aeration costs and also

handling of high amount of toxic sludge

The solution • MicroAerobic-Anaerobic-Aerobic • Provides most diverse microbial consortia responsible for

the biodegradation of complex molecular structures. • During Anaerobic Step the complex molecules are

hydrolysed • Much of the COD removed , thus reduce aeration demand • Lower sludge production and thus solids handling costs.• Presence of inhibitory substances, pH changes, salinity

fluctuations cause deflocculation and wash out of microbes • Thus, immobilization of microbes on carriers

Pilot Testing

• Proposed Micro Aerobic-Anaerobic-Aerobic Scheme with denitrification

• Tested for two years at site•

Pollutant Removal

Pollutantinfluent

concentrationsremoval %

overall in different steps

mg/L % microaerob-+ anaerobic

aerobic

Aromatic solvents 1,5-3,0 100,0 90,0 10,0

Methanol 930 - 1980 100,0 95,0-100,0 0-5,0

Dichloromethane 4,0 - 42,0 100,0 100,0 0,0

MIBK 9,0 -330,0 100,0 76,0 24,0

Amines 56,2 - 64,8 100,0 90,0-100,0 0,0-10,0

Triazine derivatives 96,5 - 114,3 100,0 64,2 35,8

Carbamates 17,8 - 24,3 80,0 72,0 28,0

Herbicides total 154,0 - 337,0 91,5 75 25

Biodegradation of HerbicidesComponent 26.10.05

Influent degree of removal, overall

% removal insingle steps

mg/L absol. S D % MAE ANA AER

Atrazine 20,4 19,6 96,1 57,1 18,4 24,5Simazine 1,9 1,9 100,0 57,9 10,5 31,6Terb.Azine 14,1 13,3 94,3 51,9 34,6 13,5Ametryn 1,7 1,7 100,0 52,9 11,8 35,3Prometryn 1,9 1,9 100,0 47,4 31,6 21,0Tris 12,6 11,9 90,0 52,1 31,9 16,0Unknown 60,3 53,1 88,1 62,3 23,4 14,3Terbutryn 1,4 1,4 100,0 42,9 28,6 28,5Linuron 11,3 11,3 100,0 92,9 7,1Bromacil 1,0 0,8 80,0 50,0 50,0 0,0Dicuran 7,4 6,8 91,9 20,6 29,4 50,0Diuron 3,2 3,2 100,0 43,8 6,3 49,9SHerbicides 161,9 148,1 91,5 60,6 9,2 30,2

Full Scale Plant

• 1.8 MLD • 8-12,000 mg/lit COD• 300-600 mg/lit TKN • 12-25,000 mg/lit

Salinity

Full Scale Plant

COD reduction

COD-removal

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

total

microaerobic

Nitrogen Reduction

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

450,0

NO3Neffl NH4Neffl

N (mg/L) TKNinfl

LEVAPOR: IFAS• Single Basin Construction• 12 to 15 % Filling • Loading Rates 2.5 to 4

Kg.COD/m3.day • 6 mm retention screens• Lower mixing energy

requirement :• 2-3 mg/lit Bulk DO• 4-7 Nm3/m2.hr mixing air• Up to 35% reactor volume

saving compared to plastic media

How Can We Associate

• Problem analysis for the treatment of high strength industrial and municipal wastewater treatment

• Define treatment goals and conceptual process design

• Development of optimal process and parameters • Manufacturing of high performance tailor made bio

carriers for the application • Process Start up

Thank You !!!!

top related