life and death of metal-poor massive stars – a new vision...

Post on 10-Jul-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Life and death of metal-poor massive stars –

A new vision for THESEUS’ science

Dorottya Szécsi

Humboldt FellowUniversity of Cologne

Symposium S4, EWASS, Lyon24th June 2019

Life and death of metal-poor massive stars –

A new vision for THESEUS’ science

Dorottya Szécsi

Humboldt FellowUniversity of Cologne

Symposium S4, EWASS, Lyon24th June 2019

Life and death of metal-poor massive stars –

A new vision for THESEUS’ science

Dorottya Szécsi

Humboldt FellowUniversity of Cologne

Symposium S4, EWASS, Lyon24th June 2019

Life and death of metal-poor massive stars –

A new vision for THESEUS’ science

Dorottya Szécsi

Humboldt FellowUniversity of Cologne

Symposium S4, EWASS, Lyon24th June 2019

GW/SGRB progenitors: 3 theoriesDorottya Szécsi:

New visionfor THESEUS

e.g. Vigna-Gómez..Szécsi+18; Szécsi’17a,b; Szécsi&Wünsch’18

GW/SGRB progenitors: 3 theoriesDorottya Szécsi:

New visionfor THESEUS

Common envelopein a binary

Chemically-homogeneous

evolutionin a binary

Dynamics indense clusters

e.g. Vigna-Gómez..Szécsi+18; Szécsi’17a,b; Szécsi&Wünsch’18

GW/SGRB progenitors: 3 theoriesDorottya Szécsi:

New visionfor THESEUS

Common envelopein a binary

Chemically-homogeneous

evolutionin a binary

Dynamics indense clusters

e.g. Vigna-Gómez..Szécsi+18; Szécsi’17a,b; Szécsi&Wünsch’18

GW/SGRB progenitors: 3 theoriesDorottya Szécsi:

New visionfor THESEUS

Common envelopein a binary

Chemically-homogeneous

evolutionin a binary

Dynamics indense clusters

e.g. Vigna-Gómez..Szécsi+18; Szécsi’17a,b; Szécsi&Wünsch’18

GW/SGRB progenitors: 3 theoriesDorottya Szécsi:

New visionfor THESEUS

Common envelopein a binary

Chemically-homogeneous

evolutionin a binary

Dynamics indense clusters

e.g. Vigna-Gómez..Szécsi+18; Szécsi’17a,b; Szécsi&Wünsch’18

GW/SGRB progenitors: 3 theoriesDorottya Szécsi:

New visionfor THESEUS

Common envelopein a binary

Chemically-homogeneous

evolutionin a binary

Dynamics indense clusters

low Z massive stars

e.g. Vigna-Gómez..Szécsi+18; Szécsi’17a,b; Szécsi&Wünsch’18

GW/SGRB progenitors: 3 theoriesDorottya Szécsi:

New visionfor THESEUS

Common envelopein a binary

Chemically-homogeneous

evolutionin a binary

Dynamics indense clusters

low Z massive starslow Z...

e.g. Vigna-Gómez..Szécsi+18; Szécsi’17a,b; Szécsi&Wünsch’18

GW/SGRB progenitors: 3 theoriesDorottya Szécsi:

New visionfor THESEUS

Common envelopein a binary

Chemically-homogeneous

evolutionin a binary

Dynamics indense clusters

low Z massive starslow Z...

massive?? stars

e.g. Vigna-Gómez..Szécsi+18; Szécsi’17a,b; Szécsi&Wünsch’18

GW/SGRB progenitors: 3 theoriesDorottya Szécsi:

New visionfor THESEUS

Common envelopein a binary

Chemically-homogeneous

evolutionin a binary

Dynamics indense clusters

low Z massive starslow Z...

massive?? stars

e.g. Vigna-Gómez..Szécsi+18; Szécsi’17a,b; Szécsi&Wünsch’18

GW/SGRB progenitors: 3 theoriesDorottya Szécsi:

New visionfor THESEUS

Commonenvelopein a binary

Chemically-homogeneous

evolutionin a binary

Dynamics indenseclusters

Metal-poor massive stars

e.g. Vigna-Gómez..Szécsi+18; Szécsi’17a,b; Szécsi&Wünsch’18; Szécsi’16;

LGRB progenitor theoriesDorottya Szécsi:

New visionfor THESEUS

e.g. Yoon&Langer’05; Woosley&Heger’06; Yoon+06; Szécsi+15;Szécsi’16; Marchant+16; Szécsi’17a,b

LGRB progenitor theoriesDorottya Szécsi:

New visionfor THESEUS

Chemicallyhomogeneous

evolutionas a single star

Chemically-homogeneous

evolutionin a binary

e.g. Yoon&Langer’05; Woosley&Heger’06; Yoon+06; Szécsi+15;Szécsi’16; Marchant+16; Szécsi’17a,b

LGRB progenitor theoriesDorottya Szécsi:

New visionfor THESEUS

Chemicallyhomogeneous

evolutionas a single star

Chemically-homogeneous

evolutionin a binary

e.g. Yoon&Langer’05; Woosley&Heger’06; Yoon+06; Szécsi+15;Szécsi’16; Marchant+16; Szécsi’17a,b

LGRB progenitor theoriesDorottya Szécsi:

New visionfor THESEUS

Chemicallyhomogeneous

evolutionas a single star

Chemically-homogeneous

evolutionin a binary

e.g. Yoon&Langer’05; Woosley&Heger’06; Yoon+06; Szécsi+15;Szécsi’16; Marchant+16; Szécsi’17a,b

LGRB progenitor theoriesDorottya Szécsi:

New visionfor THESEUS

Chemicallyhomogeneous

evolutionas a single star

Chemically-homogeneous

evolutionin a binary

low Z massive stars

e.g. Yoon&Langer’05; Woosley&Heger’06; Yoon+06; Szécsi+15;Szécsi’16; Marchant+16; Szécsi’17a,b

LGRB progenitor theoriesDorottya Szécsi:

New visionfor THESEUS

Chemicallyhomogeneous

evolutionas a single star

Chemically-homogeneous

evolutionin a binary

low Z massive stars

e.g. Yoon&Langer’05; Woosley&Heger’06; Yoon+06; Szécsi+15;Szécsi’16; Marchant+16; Szécsi’17a,b

GRB progenitors Dorottya Szécsi:New vision

for THESEUS

Commonenvelopein a binary

Chemically-homogeneous

evolutionin a binary

Dynamics indenseclusters

Metal-poor massive stars

Chem.-hom.evolution

as single star

Chem.-hom.evolutionin a binary

GRB progenitors Dorottya Szécsi:New vision

for THESEUS

Commonenvelopein a binary

Chemically-homogeneous

evolutionin a binary

Dynamics indenseclusters

Metal-poor massive stars

Chem.-hom.evolution

as single star

Chem.-hom.evolutionin a binary

L-GRBs

S-GRBs

However...

Are they observed?Dorottya Szécsi:

New visionfor THESEUS

Are they observed?Dorottya Szécsi:

New visionfor THESEUS

Z0

Pop III

0

dwarf g.Z�50

∼10

SMCZ�10

∼150

LMCZ�4

∼300

MWZ�

>800

spectroscopy(i.e. direct evidence)

e.g. Castro+14,+18, Ramírez-Agudelo+17, Kubátová&Szécsi+18

Are they observed?Dorottya Szécsi:

New visionfor THESEUS

Z0

Pop III

0

dwarf g.Z�50

∼10

SMCZ�10

∼150

LMCZ�4

∼300

MWZ�

>800

spectroscopy(i.e. direct evidence)

GRB-progenitors theories...

e.g. Castro+14,+18, Ramírez-Agudelo+17, Kubátová&Szécsi+18

Indirect evidence!

Dwarf galaxies Dorottya Szécsi:New vision

for THESEUS

• observed: QHe ii = 1050 γ/sKehrig+2015

• explained by Chem. Hom.single starsSzécsi+15

• explained by Pop-III starse.g. Heap+16

• explained by X-ray binariesSchaerer+19

I Zwicky 18’s ionization

Indirect evidence↓

PopulationSynthesis studies

Legrand+07, Aloisi+09, Annibali+13, Kehrig+13, Lebouteiller+13

Dwarf galaxies Dorottya Szécsi:New vision

for THESEUS

• observed: QHe ii = 1050 γ/sKehrig+2015

• explained by Chem. Hom.single starsSzécsi+15

• explained by Pop-III starse.g. Heap+16

• explained by X-ray binariesSchaerer+19

I Zwicky 18’s ionization

Indirect evidence↓

PopulationSynthesis studies

Legrand+07, Aloisi+09, Annibali+13, Kehrig+13, Lebouteiller+13

Dwarf galaxies Dorottya Szécsi:New vision

for THESEUS

• observed: QHe ii = 1050 γ/sKehrig+2015

• explained by Chem. Hom.single starsSzécsi+15

• explained by Pop-III starse.g. Heap+16

• explained by X-ray binariesSchaerer+19

I Zwicky 18’s ionization

Indirect evidence↓

PopulationSynthesis studies

Legrand+07, Aloisi+09, Annibali+13, Kehrig+13, Lebouteiller+13

My Vision Dorottya Szécsi:New vision

for THESEUS

• a synergy between GRBs & massive stars

use GRBs to constrain theories of low-Z massive stars indirectly

luse low-Z massive star research to constrain GRB hosts

• e.g.: implement rotating stellar modelsinto population synthesis codes

• e.g.: implement collapsar conditionsinto stellar evolution code MESA

• train new PhDs in joint projects

• use existing GRB data→ prepare for THESEUS

• hold conferences to build connectionsbetween GRB & massive star communities

My Vision Dorottya Szécsi:New vision

for THESEUS

• a synergy between GRBs & massive stars

use GRBs to constrain theories of low-Z massive stars indirectly

luse low-Z massive star research to constrain GRB hosts

• e.g.: implement rotating stellar modelsinto population synthesis codes

• e.g.: implement collapsar conditionsinto stellar evolution code MESA

• train new PhDs in joint projects

• use existing GRB data→ prepare for THESEUS

• hold conferences to build connectionsbetween GRB & massive star communities

My Vision Dorottya Szécsi:New vision

for THESEUS

• a synergy between GRBs & massive stars

use GRBs to constrain theories of low-Z massive stars indirectly

luse low-Z massive star research to constrain GRB hosts

• e.g.: implement rotating stellar modelsinto population synthesis codes

• e.g.: implement collapsar conditionsinto stellar evolution code MESA

• train new PhDs in joint projects

• use existing GRB data→ prepare for THESEUS

• hold conferences to build connectionsbetween GRB & massive star communities

My Vision Dorottya Szécsi:New vision

for THESEUS

• a synergy between GRBs & massive stars

use GRBs to constrain theories of low-Z massive stars indirectly

luse low-Z massive star research to constrain GRB hosts

• e.g.: implement rotating stellar modelsinto population synthesis codes

• e.g.: implement collapsar conditionsinto stellar evolution code MESA

• train new PhDs in joint projects

• use existing GRB data→ prepare for THESEUS

• hold conferences to build connectionsbetween GRB & massive star communities

My Vision Dorottya Szécsi:New vision

for THESEUS

• a synergy between GRBs & massive stars

use GRBs to constrain theories of low-Z massive stars indirectly

luse low-Z massive star research to constrain GRB hosts

• e.g.: implement rotating stellar modelsinto population synthesis codes

• e.g.: implement collapsar conditionsinto stellar evolution code MESA

• train new PhDs in joint projects

• use existing GRB data→ prepare for THESEUS

• hold conferences to build connectionsbetween GRB & massive star communities

My Vision Dorottya Szécsi:New vision

for THESEUS

• a synergy between GRBs & massive stars

use GRBs to constrain theories of low-Z massive stars indirectly

luse low-Z massive star research to constrain GRB hosts

• e.g.: implement rotating stellar modelsinto population synthesis codes

• e.g.: implement collapsar conditionsinto stellar evolution code MESA

• train new PhDs in joint projects

• use existing GRB data→ prepare for THESEUS

• hold conferences to build connectionsbetween GRB & massive star communities

My Vision Dorottya Szécsi:New vision

for THESEUS

• a synergy between GRBs & massive stars

use GRBs to constrain theories of low-Z massive stars indirectly

luse low-Z massive star research to constrain GRB hosts

• e.g.: implement rotating stellar modelsinto population synthesis codes

• e.g.: implement collapsar conditionsinto stellar evolution code MESA

• train new PhDs in joint projects

• use existing GRB data→ prepare for THESEUS

• hold conferences to build connectionsbetween GRB & massive star communities

top related