low temperature combustion requires high dilution levels

Post on 01-Jan-2017

221 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Low temperature combustion requires highdilution levels - A challenge at high load

Prof. Bengt JohanssonDiv. of Combustion Engines, Dept. of Energy Sciences

Outline

• Lund University

• What is high pressure combustion?

• Why we need high pressure combustion?

• Low temperature combustion– HCCI

– PPC

2

Lund

3

Lund University, Maxlab I-IVEngine lab

European Spallation Source ESS

• 17 partner countries including Sweden and Denmark

• Pre construction Phase started in 2009 and ends in February 2013

• Next phase is the Construction Phase• European Spallation Source will open in

2019 and become fully operational in 2025.

• Total cost: 1.48 Billion €

Outline

• Lund University

• What is high pressure combustion?

• Why we need high pressure combustion?

• Low temperature combustion– HCCI

– PPC

6

What is high pressure combustion?

0

50

100

150

200

250

300

350

-60 -45 -30 -15 0 15 30 45 60 75 90crank angle (CAD)

cylin

der

pre

ssu

re (

bar

)Pressure before combustion =270 bar Peak pressure =300 bar

Data from Prof. Martti Larmi Aalto Univ. Finland

IMEP = 34 bar Goals:Pmax=400 barIMEP=40 bar

Outline

• Lund University

• What is high pressure combustion?

• Why we need high pressure combustion?

• Low temperature combustion– HCCI

– PPC

8

Dilution requires more media

9

Lambda = 3 means an inlet pressure of 3 bar instead of 1 bar going from SI to HCCI burning the same amount of fuel

HCCI dilution operating range

Peak pressure scales with inlet pressure =>

Pmax 240 bar instead of 80 bar with HCCI for same fuel amount burned!

Dilution effect – Simple simulations

1. CA50: 8 [ATDC].

2. CA90-10: 15 [CAD].

3. Engine geometry: standard Scania D13.

4. Inlet temperature: 303 [K].

5. Reference temperature: 298 [K].

6. Engine speed: 1250 [rpm].

7. Differential pressure exhaust minus inlet: 0.25 [bar].

8. Cylinder wall temperature: 450 [K].

9. Heat transfer modeled with the Woschniequation [44]. The C1 and C2 constants were tuned to match the experimental results in [49].

10. The rate of heat release has been approximated with a Wiebe function.

11. EGR is added in order to have 1.35 as λ. If the inlet pressure was not enough to have λ without EGR higher than 1.35, EGR was set to zero.

12. The combustion efficiency was assumed to be 100%.

13. Lower heating value 43.8 MJ/kg, stoichiometric air fuel ratio 14.68.

10

Dilution effect – Less heat losses

11

Experimental results

Inlet Pressure Sweepfocus on efficiency

13

Experimental Set-Up, Scania D12Bosch Common RailPrail 1600 [bar]

Orifices 8 [-]

Orifice Diameter 0.18 [mm]

Umbrella Angle 120° [deg]

Engine / Dyno Specrcgeometric 14.3 [-]

BMEPmax 15 [bar]

Vd 1951 [cm3]

Swirl ratio 2.9 [-]

SAE paper 2010-01-1471

1.5 2 2.5 3 3.544

46

48

50

52

54

56

58G

ross

Indi

cate

d E

ffici

ency

[%]

Abs Inlet Pressure [bar]

FR47338CVXFR47335CVXFR47334CVX

Gross Indicated Efficiency

SAE paper 2010-01-1471

1.5 2 2.5 3 3.520

22

24

26

28

30

32

Exh

aust

Los

s [%

]

Abs Inlet Pressure [bar]

FR47338CVXFR47335CVXFR47334CVX

1.5 2 2.5 3 3.544

46

48

50

52

54

56

58

Gro

ss In

dica

ted

Effi

cien

cy [%

]

Abs Inlet Pressure [bar]

FR47338CVXFR47335CVXFR47334CVX

1.5 2 2.5 3 3.520

22

24

26

28

30

32

Hea

t Tra

nsfe

r [%

]

Abs Inlet Pressure [bar]

FR47338CVXFR47335CVXFR47334CVXIt improves both because of a reduction in heat

transfer and exhaust loss.

Gross Indicated Efficiency

SAE paper 2010-01-1471

EGR Sweepfocus NOx, soot and efficiency

0 10 20 30 40 50 60 702

2.5

3

3.5

4

4.5

Abs

Pin

[bar

]

EGR [%]

0 10 20 30 40 50 60 701.4

1.5

1.6

1.7

l [-]

EGR [%]

FR47338CVXFR47335CVXFR47334CVX

17

The O2 concentration in the inlet, l, was kept constant during the sweep, this was done by adjusting the inlet pressure for a given EGR rate. This was done in order to have soot as a function solely of the EGR rate and not EGR + O2 as in a conventional EGR sweep.

How the sweep was made…

SAE paper 2010-01-1471

0 10 20 30 40 50 60 7050

51

52

53

54

55

56

57

58

59

60

Gro

ss In

dica

ted

Effi

cien

cy [%

]

EGR [%]

FR47338CVXFR47335CVXFR47334CVX

0 10 20 30 40 50 60 7015

17.5

20

22.5

25

27.5

30

Hea

t Tra

nsfe

r [%

]

EGR [%]

FR47338CVXFR47335CVXFR47334CVX

0 10 20 30 40 50 60 7015

17.5

20

22.5

25

27.5

30

Exh

aust

Los

s [%

]

EGR [%]

FR47338CVXFR47335CVXFR47334CVX

By increasing EGR, the indicated efficiency improves as a result of both a decrease in heat transfer and exhaust loss.

Gross Indicated Efficiency

SAE paper 2010-01-1471

0 10 20 30 40 50 60 700

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Soo

t [FS

N]

EGR [%]

FR47338CVXFR47335CVXFR47334CVX

0 10 20 30 40 50 60 700

1

2

3

4

5

6

7

8

spec

ific

NO

x [g

/kW

h]

EGR [%]

FR47338CVXFR47335CVXFR47334CVX

0 10 20 30 40 50 60 7099

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

Com

bust

ion

Effi

cien

cy [%

]

EGR [%]

FR47338CVXFR47335CVXFR47334CVX

Roughly 50% of EGR is necessary to keep NOx below EU VI & US10. The result seems independent on the fuel type. The usual NOx-soot trade off is preset, no soot bump is visible at this load.

The combustion efficiency is higher than 99% even with 60% of EGR è low CO & HC in the exhaust. This is not possible with diesel PPC.

NOx – soot and combustion efficiency

Summary – High Pressure

• What is high pressure combustion?– 275 bar before combustion, 300 bar peak pressure

• Why we need high pressure combustion?– High dilution reduce heat transfer losses

– High dilution reduce exhaust temperature and hence exhaust loss

– Ratio of specific heats less reduced due to combustion. Gives higher efficiency.

– Low NOx

20

Outline

• Lund University

• What is high pressure combustion?

• Why we need high pressure combustion?

• Low temperature combustion– HCCI

– PPC

21

Outline - Low Temperature Combustion

• HCCI and fuel efficiency– 50% thermal efficiency

• Partially premixed combustion, PPC– Background

– Why gasoline is the best diesel engine fuel

– 56% thermal efficiency in car size engine

– 57% thermal efficiency in truck size engine

– Why 55% thermal efficiency is better than 57%

– How to reach 26 bar IMEP with US10 NOx, PM, HC and CO engine out

22

Outline

• HCCI and fuel efficiency– 50% thermal efficiency

• Partially premixed combustion, PPC– Background

– Why gasoline is the best diesel engine fuel

– 56% thermal efficiency in car size engine

– 57% thermal efficiency in truck size engine

– Why 55% thermal efficiency is better than 57%

– How to reach 26 bar IMEP with US10 NOx, PM, HC and CO engine out

23

BackgroundCombustion concepts

Spark Ignition (SI) engine (Gasoline, Otto)

Compression Ignition (CI) engine (Diesel)

+ Clean with 3-way Catalyst

- Poor low & part load efficiency

+ High efficiency- Emissions of NOx and

soot

24

BackgroundCombustion concepts

Spark Ignition (SI) engine (Gasoline, Otto)

Compression Ignition (CI) engine (Diesel)

Homogeneous Charge Compression Ignition

(HCCI)

Partially premixed combustion (PPC)

Diesel HCCI

Spark Assisted Compression Ignition

(SACI)Gasoline HCCI

+ High efficiency

+ Ultra low NOx

-Combustion control

-Power density

+ Injection controlled- Less emissions

advantage

+ Clean with 3-way Catalyst

- Poor low & part load efficiency

+ High efficiency- Emissions of NOx and

soot

25

Efficiencies?

26

Energy flow in an IC engine

FuelMEP

QhrMEP

IMEPgross

lMEPnet

BMEP

QemisMEP

QlossMEP

QhtMEP

QexhMEP

PMEP

FMEP

Combustion efficiency

Thermodynamic efficiency

Gas exchange efficiency

Mechanical efficiency

Net Indicated efficiency

Brake efficiency

Gross Indicated efficiency

FuelMEP

QhrMEP

IMEPgross

lMEPnet

BMEP

QemisMEP

QlossMEP

QhtMEP

QexhMEP

PMEP

FMEP

Combustion efficiency

Thermodynamic efficiency

Gas exchange efficiency

Mechanical efficiency

Net Indicated efficiency

Brake efficiency

Gross Indicated efficiency

hhhhh MechanicaleGasExchangmicThermodynaCombustionBrake***=

27

28

Thermodynamic efficiencySaab SVC variable compression ratio, VCR, HCCI, Rc=10:1-30:1; General Motors L850 “World engine”, HCCI, Rc=18:1, SI, Rc=18:1, SI, Rc=9.5:1 (std) Scania D12 Heavy duty diesel engine, HCCI, Rc=18:1;

Fuel: US regular Gasoline

SAE2006-01-0205

All four efficiencies

29

Outline

• HCCI and fuel efficiency– 50% thermal efficiency

• Partially premixed combustion, PPC– Background

– Why gasoline is the best diesel engine fuel

– 56% thermal efficiency in car size engine

– 57% thermal efficiency in truck size engine

– Why 55% thermal efficiency is better than 57%

– How to reach 26 bar IMEP with US10 NOx, PM, HC and CO engine out

30

Partially Premixed Combustion, PPC

31

-180 -160 -140 -120 -100 -80 -60 -40 -20

1000

2000

3000

4000

5000

6000 y

HC

[ppm

]

SOI [ATDC]-180 -160 -140 -120 -100 -80 -60 -40 -20

200

400

600

800

1000

1200

NO

x [p

pm]

Def: region between truly homogeneous combustion, HCCI, and diffusion controlled combustion, diesel

HCCI

PPC

CIPCCI

Simultaneous OH- and Formaldehyde-LIFVolvo Cars DI diesel in HCCI mode

32

Port HCCI – OH and CH2O

1. Background subtracted2. Remaining noise = 03. Images flattened4. OH (red)

formaldehyde (green)pasted together 33

Port HCCI – OH and CH2O

SAE paper 2004-01-294934

DI HCCI - homogeneity studies

Formaldehyde images acquired at -7 CAD.Numbers above images indicate SOI.

-300 to -80: homogeneous with growing “in-homogeneities as SOI moves later-70 to -50: holes appear-40 to -20: obvious structures. Formaldehyde along cylinder walls.

SAE paper 2005-01-386935

DI HCCI - homogeneity studies

-300 -250 -200 -150 -100 -50 00

0.2

0.4

0.6

0.8

1

Start of Injection (CAD)

Nor

mal

ised

val

ues

-300 -250 -200 -150 -100 -50 00

50

100

150

200

250

300

NO

x (p

pm)

SOI -300 -20 CAD

Homogeneity IndexFormaldehyde surfaceNOx

36

PPC: Effect of EGR with diesel fuel

37

Load 8 bar IMEP

Abs. Inlet Pressure 2.5 bar

Engine Speed 1090 rpm

Swirl Ratio 1.7

Compression Ratio 12.4:1 (Low)

DEER2005

Scania D12 single cylinder

1

43

2

Outline

• HCCI and fuel efficiency– 50% thermal efficiency

• Partially premixed combustion, PPC– Background

– Why gasoline is the best diesel engine fuel

– 56% thermal efficiency in car size engine

– 57% thermal efficiency in truck size engine

– Why 55% thermal efficiency is better than 57%

– How to reach 26 bar IMEP with US10 NOx, PM, HC and CO engine out

39

40

PPC with low cetane diesel

Lic. Thesis by Henrik Nordgren 2005 and presented at DEER2005

Outline

• HCCI and fuel efficiency– 50% thermal efficiency

• Partially premixed combustion, PPC– Background

– Why gasoline is the best diesel engine fuel

– 56% thermal efficiency in car size engine

– 57% thermal efficiency in truck size engine

– Why 55% thermal efficiency is better than 57%

– How to reach 26 bar IMEP with US10 NOx, PM, HC and CO engine out

41

42

VOLVO D5 with Gasoline

-80 -60 -40 -20 0 20 400

50

100

150

CAD [TDC]

Cyl Pressure [bar]Inj Signal [a.u.]RoHR [J/CAD]

N 2000 [rpm]

IMEPg 13.38 [bar]

Pin 2.57 [bar]

Tin 354 [K]

EGR 39 [%]

lambda 1.75 [-]

Injection SOI [TDC] Fuel MEP [bar] Percentage [%]

1 -64.00 10.88 41.28

2 -29.20 7.74 29.36

3 0.80 7.74 29.36

Load NoiseLoad & CA50

Burn rate and ηT

43

Optimum Thermodynamic efficiency

Premixedness

High heat losses

Low effective expansion ratio

-80 -60 -40 -20 0 20 400

50

100

150

CAD [TDC]

Cyl Pressure [bar]Inj Signal [a.u.]RoHR [J/CAD]

44

Efficiencies & Emissions

Indicated Gross Thermal Combustion/240

42

44

46

48

50

52

54

56

58

60

Effi

cien

cy [%

]

91 %

NOx*100 [g/kWh] CO [g/kWh] HC [g/kWh] Soot [FSN]0

5

10

15

20

25

30

35

40

Em

issi

ons

BelowDetectableLevel

13 ppm

0.46 %

4598 ppm

! D60 project goal

dPmax 7.20 [bar/CAD]

CA5 3.40 [TDC]

ID -1.00 [CAD]

CA50 11.35 [TDC]

CA90-10 13.00 [CAD]

Outline

• HCCI and fuel efficiency– 50% thermal efficiency

• Partially premixed combustion, PPC– Background

– Why gasoline is the best diesel engine fuel

– 56% thermal efficiency in car size engine

– 57% thermal efficiency in truck size engine

– Why 55% thermal efficiency is better than 57%

– How to reach 26 bar IMEP with US10 NOx, PM, HC and CO engine out

45

464646

Experimental setup, Scania D12Bosch Common RailPrailmax 1600 [bar]

Orifices 8 [-]

Orifice Diameter 0.18 [mm]

Umbrella Angle 120 [deg]

Engine / Dyno SpecBMEPmax 15 [bar]

Vd 1951 [cm3]

Swirl ratio 2.9 [-]

Fuel: Gasoline or Ethanol

47474747

Fuel amount in the pilot is a function of:1.rc2.RON/MON3.EGR

-60 -50 -40 -30 -20 -10 0 100

0.2

0.4

0.6

0.8

1

CAD [TDC]

[a.u

.]

Load & CA50Const.

It must not react during compression

Injection StrategyIt consists of two injections. The first one is placed @ -60 TDC to create a homogeneous mixture while the second around TDC. The stratification created by the second injection triggers the combustion. The first injection must not react during the compression stroke, this is achieved by using EGR.

SAE 2009-01-0944

4848

IMEP sweep @ 1300 [rpm]EGR ~ const throughout the sweep, 40-50 [%]l~ const throughout the sweep, 1.5-1.6 [-]Tin = 308 [K]

Standard piston bowl, rc: 17:1

High Compression Ratio PPC

SAE 2009-01-2668

49

Running Conditions

4 5 6 7 8 9 10 11 12 131.5

1.75

2

2.25

2.5

Gross IMEP [bar]

[bar

]

4 5 6 7 8 9 10 11 12 130

50

100

150

200

250

300

350

[C]Inlet Pressure

Exhaust Pressure

Inlet TemperatureExhaust Temperature

4 5 6 7 8 9 10 11 12 131.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Gross IMEP [bar]l

[-]4 5 6 7 8 9 10 11 12 13

30

35

40

45

50

55

60

EG

R [%

]

5050

Efficiencies

4 5 6 7 8 9 10 11 12 1350

55

60

65

70

75

80

85

90

95

100

Gross IMEP [bar]

[%] Combustion Efficiency

Thermal EfficiencyGas Exchange EfficiencyMechanical Efficiency

512 4 6 8 10 12 14

0

2

4

6

8

10

12

14

16

18

Gross IMEP [bar]

CO

[g/k

Wh]

GrossNetBrakeEU VIUS 10

2 4 6 8 10 12 140

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Sm

oke

[FS

N]

Gross IMEP [bar]

512 4 6 8 10 12 14

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Gross IMEP [bar]

HC

[g/k

Wh]

GrossNetBrakeEU VIUS 10

EmissionsObsolete injection system

Not well tuned EGR-lcombination

2 4 6 8 10 12 140

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Gross IMEP [bar]

NO

x [g

/kW

h]

GrossNetBrakeEU VIUS 10

Outline

• HCCI and fuel efficiency– 50% thermal efficiency

• Partially premixed combustion, PPC– Background

– Why gasoline is the best diesel engine fuel

– 56% thermal efficiency in car size engine

– 57% thermal efficiency in truck size engine

– Why 55% thermal efficiency is better than 57%

– How to reach 26 bar IMEP with US10 NOx, PM, HC and CO engine out

52

5353

Low Compression Ratio PPC

IMEP sweep @ 1300 [rpm]EGR ~ const throughout the sweep, 40-50 [%]l~ const throughout the sweep, 1.5-1.6 [-]Tin = 308 [K]

Custom piston bowl, rc: 14.3:1

SAE 2010-01-0871

5454

4 6 8 10 12 14 16 1850

55

60

65

70

75

80

85

90

95

100

Gross IMEP [bar]

[%] Combustion Efficiency

Thermal EfficiencyGas Exchange EfficiencyMechanical Efficiency

Efficiencies

5555

4 6 8 10 12 14 16 180

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Sm

oke

[FS

N]

Gross IMEP [bar]2 4 6 8 10 12 14 16 18

0

0.1

0.2

0.3

0.4

0.5

0.6

Gross IMEP [bar]

NO

x [g

/kW

h]

GrossNetBrakeEU VIUS 10

2 4 6 8 10 12 14 16 180

1

2

3

4

5

6

7

8

9

10

Gross IMEP [bar]

CO

[g/k

Wh]

GrossNetBrakeEU VIUS 10

2 4 6 8 10 12 14 16 180

0.3

0.6

0.9

1.2

1.5

Gross IMEP [bar]

HC

[g/k

Wh]

GrossNetBrakeEU VIUS 10

Emissions

Better tuned EGR-lcombination

Fuel Effects on High ON Fuels PPC

Prof. Bengt JohanssonDivision of Combustion EnginesDepartment of Energy Sciences

Lund University56

5757

Fuel specification

RON MON C H/C O/C LHV [MJ/kg] A/F stoich

Ethanol 107 89 2 3 0.5 26.9 9

FR47330CVX 87.1 80.5 7.2 1.92 0 43.5 14.6

FR47331CVX 92.9 84.7 6.9 1.99 0.03 41.6 14.02

FR47333CVX 80.0 75.0 7.16 1.97 0 43.7 14.65

FR47334CVX 69.4 66.1 7.11 1.98 0 43.8 14.68

FR47335CVX 99 96.9 7.04 2.28 0 44.3 15.1

FR47336CVX 70.3 65.9 7.1 2.08 0 43.8 14.83

FR47338CVX 88.6 79.5 7.21 1.88 0 43.5 14.53

57

5858

Inlet Conditions

2 4 6 8 10 12 14 16 18 20300

320

340

360

380

400

420

440

Gross IMEP [bar]

Inle

t Tem

pera

ture

[K]

EthanolFR47330CVXFR47331CVXFR47333CVXFR47334CVXFR47335CVXFR47336CVXFR47338CVX

2 4 6 8 10 12 14 16 18 200.5

1

1.5

2

2.5

3

3.5

4

Gross IMEP [bar]

abs

Inle

t Pre

ssur

e [b

ar]

EthanolFR47330CVXFR47331CVXFR47333CVXFR47334CVXFR47335CVXFR47336CVXFR47338CVX

2 4 6 8 10 12 14 16 18 200

10

20

30

40

50

60

Gross IMEP [bar]

EG

R [%

] EthanolFR47330CVXFR47331CVXFR47333CVXFR47334CVXFR47335CVXFR47336CVXFR47338CVX

2 4 6 8 10 12 14 16 18 201

1.5

2

2.5

3

3.5

4

4.5

Gross IMEP [bar]

l [-]

EthanolFR47330CVXFR47331CVXFR47333CVXFR47334CVXFR47335CVXFR47336CVXFR47338CVX

58

59

Injection strategy

2 4 6 8 10 12 14 16 18 200

5

10

15

20

25

30

35

40

Gross IMEP [bar]

Fuel

ME

P m

ain

[bar

]

EthanolFR47330CVXFR47331CVXFR47333CVXFR47334CVXFR47335CVXFR47336CVXFR47338CVX

2 4 6 8 10 12 14 16 18 200

5

10

15

20

25

30

35

40

Gross IMEP [bar]

Fuel

ME

P p

ilot [

bar]

EthanolFR47330CVXFR47331CVXFR47333CVXFR47334CVXFR47335CVXFR47336CVXFR47338CVX

-60 -50 -40 -30 -20 -10 0 100

0.2

0.4

0.6

0.8

1

CAD [TDC]

[a.u.]

59

60

Efficiencies

2 4 6 8 10 12 14 16 18 2095

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Gross IMEP [bar]

Com

bust

ion

Effi

cien

cy [%

]

EthanolFR47330CVXFR47331CVXFR47333CVXFR47334CVXFR47335CVXFR47336CVXFR47338CVX

2 4 6 8 10 12 14 16 18 2040

42

44

46

48

50

52

54

56

58

60

Gross IMEP [bar]

Gro

ss In

dica

ted

Effi

cien

cy [%

]

EthanolFR47330CVXFR47331CVXFR47333CVXFR47334CVXFR47335CVXFR47336CVXFR47338CVX

2 4 6 8 10 12 14 16 18 2040

42

44

46

48

50

52

54

56

58

60

Gross IMEP [bar]

Ther

mal

Effi

cien

cy [%

]

EthanolFR47330CVXFR47331CVXFR47333CVXFR47334CVXFR47335CVXFR47336CVXFR47338CVX

60

61

Emissions – different fuels

2 4 6 8 10 12 14 16 18 200

0.5

1

1.5

2

2.5

Gross IMEP [bar]

Soo

t [FS

N]

EthanolFR47330CVXFR47331CVXFR47333CVXFR47334CVXFR47335CVXFR47336CVXFR47338CVX

2 4 6 8 10 12 14 16 18 200

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Gross IMEP [bar]

NO

x [g

/kW

h]

EthanolFR47330CVXFR47331CVXFR47333CVXFR47334CVXFR47335CVXFR47336CVXFR47338CVX

2 4 6 8 10 12 14 16 18 200

2

4

6

8

10

12

Gross IMEP [bar]

CO

[g/k

Wh]

EthanolFR47330CVXFR47331CVXFR47333CVXFR47334CVXFR47335CVXFR47336CVXFR47338CVX

2 4 6 8 10 12 14 16 18 200

1

2

3

4

5

6

7

8

9

10

Gross IMEP [bar]

HC

[g/k

Wh]

EthanolFR47330CVXFR47331CVXFR47333CVXFR47334CVXFR47335CVXFR47336CVXFR47338CVX

Outline

• HCCI and fuel efficiency– 50% thermal efficiency

• Partially premixed combustion, PPC– Background

– Why gasoline is the best diesel engine fuel

– 56% thermal efficiency in car size engine

– 57% thermal efficiency in truck size engine

– Why 55% thermal efficiency is better than 57%

– How to reach 26 bar IMEP with US10 NOx, PM, HC and CO engine out

62

6363

Experimental Apparatus, Scania D13XPI Common RailOrifices 8 [-]

Orifice Diameter 0.19 [mm]

Umbrella Angle 148 [deg]

Engine / Dyno SpecBMEPmax 25 [bar]

Vd 2124 [cm3]

Swirl ratio 2.095 [-]

Standard piston bowl, rc: 17.3:1

645 10 15 20 25 3040

50

60

70

80

90

100

Gross IMEP [bar]

[%]

h combustionh gas exchangeh thermalh mechanical

Efficiency

hhhhh MechanicaleGasExchangmicThermodynaCombustionBrake×××=

50% brake efficiency è maximization of all intermediate efficiencies

RoHR, Cylinder Pressure & Injection Signal

-60 -40 -20 0 20 40 600

50

100

150

200

250

CAD [TDC]

IMEPg: 5 [bar]

lambda: 1.57 [-]EGR: 42.66 [%]CA50: 9.71 [TDC]COV: 2.2 [%]eta comb: 94.16 [%]NOx: 0.108 [g/kWh]HC: 2.7 [g/kW]CO: 23 [g/kW]Soot: 0.0033 [FSN]

Abs Pin: 1.07 [bar]Abs Pex: 1.15 [bar]Tin: 308 [K]Tex: 521 [K]

RoHR/3 [J/CAD]Cylinder Pressure [bar]Injection Current [a.u.]

-60 -40 -20 0 20 40 600

50

100

150

200

250

CAD [TDC]

IMEPg: 26 [bar]

lambda: 1.32 [-]EGR: 47.98 [%]CA50: 13.9 [TDC]COV: 0.56 [%]eta comb: 99.89 [%]NOx: 0.264 [g/kWh]HC: 0.091 [g/kW]CO: 0.31 [g/kW]Soot: 0.26 [FSN]

Abs Pin: 3.64 [bar]Abs Pex: 4.01 [bar]Tin: 293 [K]Tex: 673 [K]

RoHR/3 [J/CAD]Cylinder Pressure [bar]Injection Current [a.u.]

-60 -40 -20 0 20 40 600

50

100

150

200

250

CAD [TDC]

IMEPg: 20 [bar]

lambda: 1.37 [-]EGR: 53.22 [%]CA50: 9.27 [TDC]COV: 0.7 [%]eta comb: 99.89 [%]NOx: 0.201 [g/kWh]HC: 0.082 [g/kW]CO: 0.31 [g/kW]Soot: 0.21 [FSN]

Abs Pin: 3.21 [bar]Abs Pex: 3.48 [bar]Tin: 293 [K]Tex: 606 [K]

RoHR/3 [J/CAD]Cylinder Pressure [bar]Injection Current [a.u.]

-60 -40 -20 0 20 40 600

50

100

150

200

250

CAD [TDC]

IMEPg: 16 [bar]

lambda: 1.36 [-]EGR: 46.69 [%]CA50: 7.6 [TDC]COV: 0.58 [%]eta comb: 99.82 [%]NOx: 0.281 [g/kWh]HC: 0.1 [g/kW]CO: 0.63 [g/kW]Soot: 0.31 [FSN]

Abs Pin: 2.35 [bar]Abs Pex: 2.88 [bar]Tin: 292 [K]Tex: 623 [K]

RoHR/3 [J/CAD]Cylinder Pressure [bar]Injection Current [a.u.]

-60 -40 -20 0 20 40 600

50

100

150

200

250

CAD [TDC]

IMEPg: 11 [bar]

lambda: 1.48 [-]EGR: 46.41 [%]CA50: 6.82 [TDC]COV: 1.2 [%]eta comb: 99.4 [%]NOx: 0.317 [g/kWh]HC: 0.22 [g/kW]CO: 2.6 [g/kW]Soot: 0.05 [FSN]

Abs Pin: 1.76 [bar]Abs Pex: 2.73 [bar]Tin: 291 [K]Tex: 612 [K]

RoHR/3 [J/CAD]Cylinder Pressure [bar]Injection Current [a.u.]

65

RoHR, Cylinder Pressure & Injection Signal

-60 -40 -20 0 20 40 600

50

100

150

200

250

CAD [TDC]

IMEPg: 5 [bar]

lambda: 1.57 [-]EGR: 42.66 [%]CA50: 9.71 [TDC]COV: 2.2 [%]eta comb: 94.16 [%]NOx: 0.108 [g/kWh]HC: 2.7 [g/kW]CO: 23 [g/kW]Soot: 0.0033 [FSN]

Abs Pin: 1.07 [bar]Abs Pex: 1.15 [bar]Tin: 308 [K]Tex: 521 [K]

RoHR/3 [J/CAD]Cylinder Pressure [bar]Injection Current [a.u.]

66

RoHR, Cylinder Pressure & Injection Signal

-60 -40 -20 0 20 40 600

50

100

150

200

250

CAD [TDC]

IMEPg: 11 [bar]

lambda: 1.48 [-]EGR: 46.41 [%]CA50: 6.82 [TDC]COV: 1.2 [%]eta comb: 99.4 [%]NOx: 0.317 [g/kWh]HC: 0.22 [g/kW]CO: 2.6 [g/kW]Soot: 0.05 [FSN]

Abs Pin: 1.76 [bar]Abs Pex: 2.73 [bar]Tin: 291 [K]Tex: 612 [K]

RoHR/3 [J/CAD]Cylinder Pressure [bar]Injection Current [a.u.]

67

RoHR, Cylinder Pressure & Injection Signal

-60 -40 -20 0 20 40 600

50

100

150

200

250

CAD [TDC]

IMEPg: 16 [bar]

lambda: 1.36 [-]EGR: 46.69 [%]CA50: 7.6 [TDC]COV: 0.58 [%]eta comb: 99.82 [%]NOx: 0.281 [g/kWh]HC: 0.1 [g/kW]CO: 0.63 [g/kW]Soot: 0.31 [FSN]

Abs Pin: 2.35 [bar]Abs Pex: 2.88 [bar]Tin: 292 [K]Tex: 623 [K]

RoHR/3 [J/CAD]Cylinder Pressure [bar]Injection Current [a.u.]

68

RoHR, Cylinder Pressure & Injection Signal

-60 -40 -20 0 20 40 600

50

100

150

200

250

CAD [TDC]

IMEPg: 20 [bar]

lambda: 1.37 [-]EGR: 53.22 [%]CA50: 9.27 [TDC]COV: 0.7 [%]eta comb: 99.89 [%]NOx: 0.201 [g/kWh]HC: 0.082 [g/kW]CO: 0.31 [g/kW]Soot: 0.21 [FSN]

Abs Pin: 3.21 [bar]Abs Pex: 3.48 [bar]Tin: 293 [K]Tex: 606 [K]

RoHR/3 [J/CAD]Cylinder Pressure [bar]Injection Current [a.u.]

69

RoHR, Cylinder Pressure & Injection Signal

-60 -40 -20 0 20 40 600

50

100

150

200

250

CAD [TDC]

IMEPg: 26 [bar]

lambda: 1.32 [-]EGR: 47.98 [%]CA50: 13.9 [TDC]COV: 0.56 [%]eta comb: 99.89 [%]NOx: 0.264 [g/kWh]HC: 0.091 [g/kW]CO: 0.31 [g/kW]Soot: 0.26 [FSN]

Abs Pin: 3.64 [bar]Abs Pex: 4.01 [bar]Tin: 293 [K]Tex: 673 [K]

RoHR/3 [J/CAD]Cylinder Pressure [bar]Injection Current [a.u.]

70

7171

5 10 15 20 25 300

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Gross IMEP [bar]

Soo

t [FS

N]

Emissions

0 5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Gross IMEP [bar]

Bra

ke H

C [g

/kW

h]

Brake HCUS 10EU VI

0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

Gross IMEP [bar]

Bra

ke N

Ox

[g/k

Wh]

Brake NOxUS10EU VI

0 5 10 15 20 25 300

5

10

15

20

25

Gross IMEP [bar]

Bra

ke C

O [g

/kW

h]

Brake COUS 10EU VI

727272

RON MON C H/C O/C LHV [MJ/kg] A/F stoichGroup 1 FR47335CVX 99.0 96.9 7.04 2.28 0.00 44.30 15.10

FR47332CVX 97.7 87.5 6.61 2.06 0.07 39.70 13.44

FR47337CVX 96.5 86.1 7.53 1.53 0.00 42.10 14.03

Group 2 FR47338CVX 88.6 79.5 7.21 1.88 0.00 43.50 14.53

FR47330CVX 87.1 80.5 7.20 1.92 0.00 43.50 14.60

FR47331CVX 92.9 84.7 6.90 1.99 0.03 41.60 14.02

Group 3 FR47336CVX 70.3 65.9 7.10 2.08 0.00 43.80 14.83

FR47334CVX 69.4 66.1 7.11 1.98 0.00 43.80 14.68

FR47333CVX 80.0 75.0 7.16 1.97 0.00 43.70 14.65

Group 4 PRF20 20 20 7.2 2.28 0 44.51 15.07

MK1 n.a. 20 16 1.87 0 43.15 14.9

Fuel Matrix

737373

20 30 40 50 60 70 80 90 1000

5

10

15

20

25

RON [-]

IME

P g

ross

[bar

]

Stable operational load vs. fuel type

Tested Load Area

0 5 10 15 20 25 300

0.5

1

1.5

2

2.5

3

Gross IMEP [bar]

Soot

[FSN

]

G. ON 99/97G. ON 98/88G. ON 97/86G. ON 93/85G. ON 89/80G. ON 87/81G. ON 80/75G. ON 70/66G. ON 69/66D. CN 52PRF20

Diesel vs. Gasoline

747474

Soot Emissions

75

Summary

76

Engine combustion - direction

Spark Ignition (SI) engine (Gasoline,

Otto)

Compression Ignition (CI) engine

(Diesel)

Homogeneous Charge

Compression Ignition (HCCI)

Diesel PPC

+ High Efficiency

+ Ultralow NOx & soot

- Combustion control

- Power density

+ Clean with 3-way Catalyst

- Poor low & part load efficiency

+ High efficiency- Emissions of NOx

and soot

+ Injection controlled- Efficiency at high load

Gasoline PPC

+ High Efficiency+ Low NOx & soot

1900-1995

1995-2005

2005-2010

2010-

The End

Thank you

77

top related