may the force not be with you

Post on 04-Jul-2015

194 Views

Category:

Education

3 Downloads

Preview:

Click to see full reader

DESCRIPTION

Alternative theories of gravity may have considerable impact on cosmological scales while remaining compatible with Solar System tests by means of screening mechanism. I describe the natural emergence of such mechanisms in scalar-tensor theories featuring a coupling to matter of the disformal type.

TRANSCRIPT

IntroductionResults

May the force not be with youScreening Modifications of Gravity and Disformal Couplings

Miguel Zumalacarregui

Instituto de Fısica Teorica (IFT-UAM-CSIC) → ITP - Uni. Heidelberg

Refs: PRL 109 241102 (1205.3167) and PRD 87 083010 (1210.8016)

with Tomi S. Koivisto and David F. Mota

University of Geneva (May 2013)

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

The Frontiers of Gravity

Ostrogradski’s Theorem (1850)

Theories with L ⊃ ∂nq

∂tn, n ≥ 2 are unstable∗

L(q(t), q, q)→ ∂L

∂q− d

dt

∂L

∂q+

d2

dt2∂L

∂q= 0

q, q, q,...q → Q1, Q2, P1,P2

H = P1Q2 + terms independent of P1

∗ Loophole: Th’s with second order equations of motion

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

The Frontiers of Gravity

Ostrogradski’s Theorem (1850)

Theories with L ⊃ ∂nq

∂tn, n ≥ 2 are unstable∗

L(q(t), q, q)→ ∂L

∂q− d

dt

∂L

∂q+

d2

dt2∂L

∂q= 0

q, q, q,...q → Q1, Q2, P1,P2

H = P1Q2 + terms independent of P1

∗ Loophole: Th’s with second order equations of motion

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Einstein’s Theory

Lovelock’s Theorem (1971)

gµν + Local + 4-D + Lorentz Theory with 2nd order Eqs.

√−g 1

16πG(R− 2Λ)

Ways out - Clifton et al. (Phys.Rept. 2012)

Additional fields −→�� ��φ , Aµ, hµν ...

“Higher derivatives” −→ f(R)...

Extra dimensions −→ DGP, Kaluza-Klein...

Weird stuff −→ Non-local, Lorentz violating...

Scalars fields: Simple + certain limits from other theories

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Scalar Tensor-Theories

Horndenski’s Theory (1974)

gµν +�� ��φ + Local + 4-D + Lorentz Theory with 2nd order Eqs.

⇒ 4 free functions Gi(φ, X), X ≡ −12φ,µφ

LH = G2 −G3�φ+G4R+G4,X

[(�φ)2 − φ;µνφ

;µν]

+G5Gµνφ;µν −

G5,X

6

[(�φ)3 − 3(�φ)φ;µνφ

;µν + 2φ ;ν;µ φ ;λ

;ν φ ;µ;λ

]Jordan-Brans-Dicke: G4 = φ

16πG , G2 = Xω(φ) − V (φ)

Kinetic Gravity Braiding - Deffayet et al. JCAP 2010

Deriv. couplings G4(X)

, G5 6= 0

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Scalar Tensor-Theories

Horndenski’s Theory (1974)

gµν +�� ��φ + Local + 4-D + Lorentz Theory with 2nd order Eqs.

⇒ 4 free functions Gi(φ, X), X ≡ −12φ,µφ

LH = G2 −G3�φ+G4R+G4,X

[(�φ)2 − φ;µνφ

;µν]

+G5Gµνφ;µν −

G5,X

6

[(�φ)3 − 3(�φ)φ;µνφ

;µν + 2φ ;ν;µ φ ;λ

;ν φ ;µ;λ

]Jordan-Brans-Dicke: G4 = φ

16πG , G2 = Xω(φ) − V (φ)

Kinetic Gravity Braiding - Deffayet et al. JCAP 2010

Deriv. couplings G4(X)

, G5 6= 0

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Scalar Tensor-Theories

Horndenski’s Theory (1974)

gµν +�� ��φ + Local + 4-D + Lorentz Theory with 2nd order Eqs.

⇒ 4 free functions Gi(φ, X), X ≡ −12φ,µφ

LH = G2 −G3�φ+G4R+G4,X

[(�φ)2 − φ;µνφ

;µν]

+G5Gµνφ;µν −

G5,X

6

[(�φ)3 − 3(�φ)φ;µνφ

;µν + 2φ ;ν;µ φ ;λ

;ν φ ;µ;λ

]Jordan-Brans-Dicke: G4 = φ

16πG , G2 = Xω(φ) − V (φ)

Kinetic Gravity Braiding - Deffayet et al. JCAP 2010

Deriv. couplings G4(X)

, G5 6= 0

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Scalar Tensor-Theories

Horndenski’s Theory (1974)

gµν +�� ��φ + Local + 4-D + Lorentz Theory with 2nd order Eqs.

⇒ 4 free functions Gi(φ, X), X ≡ −12φ,µφ

LH = G2 −G3�φ+G4R+G4,X

[(�φ)2 − φ;µνφ

;µν]

+G5Gµνφ;µν −

G5,X

6

[(�φ)3 − 3(�φ)φ;µνφ

;µν + 2φ ;ν;µ φ ;λ

;ν φ ;µ;λ

]Jordan-Brans-Dicke: G4 = φ

16πG , G2 = Xω(φ) − V (φ)

Kinetic Gravity Braiding - Deffayet et al. JCAP 2010

Deriv. couplings G4(X), G5 6= 0

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Frames and Forces

f(R) + Lm ,vvφ=f ′, V ′=R

((

φR + Lm + Lφ ,uu

gµν↔φ−1gµν**

R+ Lm[φ−1gµν ] + Lφ

Jordan frame Einstein frame

√−g R

16πG+√−γLm

[γµν [φ, gµν ]︸ ︷︷ ︸matter metric

, · · ·]

+√−gLφ

? Point Particle:

xα = −(Γαµν + Kαµν︸︷︷︸

γαλ(∇(µγν)λ− 12∇λγµν)

)xµxν

⇒ F iφ = Ki00 +O(vi/c) ≈ f [φ]∇iφ

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Frames and Forces

f(R) + Lm ,vvφ=f ′, V ′=R

((

φR + Lm + Lφ ,uu

gµν↔φ−1gµν**

R+ Lm[φ−1gµν ] + Lφ

Jordan frame Einstein frame

√−g R

16πG+√−γLm

[γµν [φ, gµν ]︸ ︷︷ ︸matter metric

, · · ·]

+√−gLφ

? Point Particle:

xα = −(Γαµν + Kαµν︸︷︷︸

γαλ(∇(µγν)λ− 12∇λγµν)

)xµxν

⇒ F iφ = Ki00 +O(vi/c) ≈ f [φ]∇iφ

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Subtle the Force can be

F iφ ≈ f [φ]∇iφ

“You must feel the Force around you;here, between you, me, the tree, the rock,everywhere, yes”

Master Yoda

No Fφ observed in Solar System

Screening Mechanisms∣∣∣∣FφFG∣∣∣∣� 1 when

{ρ� ρ0

r � H−10

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Subtle the Force can be

F iφ ≈ f [φ]∇iφ

“You must feel the Force around you;here, between you, me, the tree, the rock,everywhere, yes”

Master Yoda

No Fφ observed in Solar System

Screening Mechanisms∣∣∣∣FφFG∣∣∣∣� 1 when

{ρ� ρ0

r � H−10

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Screening Mechanisms

�� ��ρ� ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004)

Yukawa force: φ ∝ 1re−φ/mφ with mφ(ρ) increases with ρ

(cf. Symmetron - Hinterbichler & Khoury PRL 2010)

�� ��r � H−10 Vainshtein Screening - Vainshtein (PLB 1972)

L ⊃ (∂φ) +�φX/m2 + αφTm Non-linear derivative interactions

⇒ �φ+m−2((�φ)2 − φ;µνφ

;µν)= αMδ(r)

φ ∝{r−1 if r � rV√r if r � rV

Vainshtein radius rV ∝ (GM/m2)1/3

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Screening Mechanisms

�� ��ρ� ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004)

Yukawa force: φ ∝ 1re−φ/mφ with mφ(ρ) increases with ρ

(cf. Symmetron - Hinterbichler & Khoury PRL 2010)�� ��r � H−10 Vainshtein Screening - Vainshtein (PLB 1972)

L ⊃ (∂φ) +�φX/m2 + αφTm Non-linear derivative interactions

⇒ �φ+m−2((�φ)2 − φ;µνφ

;µν)= αMδ(r)

φ ∝{r−1 if r � rV√r if r � rV

Vainshtein radius rV ∝ (GM/m2)1/3

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Screening Mechanisms

�� ��ρ� ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004)

Yukawa force: φ ∝ 1re−φ/mφ with mφ(ρ) increases with ρ

(cf. Symmetron - Hinterbichler & Khoury PRL 2010)�� ��r � H−10 Vainshtein Screening - Vainshtein (PLB 1972)

L ⊃ (∂φ) +�φX/m2 + αφTm Non-linear derivative interactions

⇒ �φ+m−2((�φ)2 − φ;µνφ

;µν)= αMδ(r)

φ ∝{r−1 if r � rV√r if r � rV

Vainshtein radius rV ∝ (GM/m2)1/3

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Screening Mechanisms

�� ��ρ� ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004)

Yukawa force: φ ∝ 1re−φ/mφ with mφ(ρ) increases with ρ

(cf. Symmetron - Hinterbichler & Khoury PRL 2010)�� ��r � H−10 Vainshtein Screening - Vainshtein (PLB 1972)

L ⊃ (∂φ) +�φX/m2 + αφTm Non-linear derivative interactions

⇒ �φ+m−2((�φ)2 − φ;µνφ

;µν)= αMδ(r)

φ ∝{r−1 if r � rV√r if r � rV

Vainshtein radius rV ∝ (GM/m2)1/3

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Form of the Matter Metric√−g R

16πG +√−γLm

[γµν [φ, gµν ]︸ ︷︷ ︸matter metric

, · · ·]

+√−gLφ

Disformal Relations - Bekenstein (PRD 1992)

γµν = C(φ)gµν︸ ︷︷ ︸conformal

+ D(φ)φ,µφ,ν︸ ︷︷ ︸disformal

ds2γ = Cds2

g +D(φ,µdxµ)2

? C 6= 1 local rescaling, same causal structure

? D 6= 0 modified causal structure

γ00 ∝ 1− DC φ

2 → Slow roll - MZ, Koivisto et al. (JCAP 2010)

+ relativistic MOND, VSL, Galileons...

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Form of the Matter Metric√−g R

16πG +√−γLm

[γµν [φ, gµν ]︸ ︷︷ ︸matter metric

, · · ·]

+√−gLφ

Disformal Relations - Bekenstein (PRD 1992)

γµν = C(φ)gµν︸ ︷︷ ︸conformal

+ D(φ)φ,µφ,ν︸ ︷︷ ︸disformal

ds2γ = Cds2

g +D(φ,µdxµ)2

? C 6= 1 local rescaling, same causal structure

? D 6= 0 modified causal structure

γ00 ∝ 1− DC φ

2 → Slow roll - MZ, Koivisto et al. (JCAP 2010)

+ relativistic MOND, VSL, Galileons...

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Theories of GravityScreening Mechanisms

Form of the Matter Metric√−g R

16πG +√−γLm

[γµν [φ, gµν ]︸ ︷︷ ︸matter metric

, · · ·]

+√−gLφ

Disformal Relations - Bekenstein (PRD 1992)

γµν = C(φ)gµν︸ ︷︷ ︸conformal

+ D(φ)φ,µφ,ν︸ ︷︷ ︸disformal

ds2γ = Cds2

g +D(φ,µdxµ)2

? C 6= 1 local rescaling, same causal structure

? D 6= 0 modified causal structure

γ00 ∝ 1− DC φ

2 → Slow roll - MZ, Koivisto et al. (JCAP 2010)

+ relativistic MOND, VSL, Galileons...

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013)

γµν = C(φ)gµν +D(φ)φ,µφ,ν

Einstein Frame: LEF =√−gR[gµν ] +

√−γLM (γµν , ψ)

Einstein

gµν → 1C gµν −

DC φ,µφ,ν

��

Jordan

Jordan Frame: LJF =√−γR[γµν ] +

√−gLM (gµν , ψ)

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013)

γµν = C(φ)gµν +D(φ)φ,µφ,ν

Einstein Frame: LEF =√−gR[gµν ] +

√−γLM (γµν , ψ)

Einstein

gµν → 1C gµν −

DC φ,µφ,ν

��

Jordan

Jordan Frame: LJF =√−γR[γµν ] +

√−gLM (gµν , ψ)

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013)

γµν = C(φ)gµν +D(φ)φ,µφ,ν

Einstein Frame: LEF =√−gR[gµν ] +

√−γLM (γµν , ψ)

Einstein

gµν→C−1gµν))

gµν→gµν−DC φ,µφ,νuu

gµν → 1C gµν −

DC φ,µφ,ν

��

D ⊂ matteroo

���� ��Galileon

))

Disformal

uuD ⊂ gravity //

OO

Jordan

Jordan Frame: LJF =√−γR[γµν ] +

√−gLM (gµν , ψ)

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

The Galileon Frame

Compute√−γR[γµν ] for

�� ��γµν = gµν + π,µπ,ν (π ≡∫ √

D(φ)dφ)

Disformal Curvature

√−γR[γµν ] =

√−g[

1

γR[gµν ]− γ

((�π)2 − π;µνπ

;µν)

+∇µξµ]

with γ−1 ≡√g/γ =

√1 + π,µπ,µ

Quartic DBI Galileon

π = brane coordinate in 5th dim.

- De Rham & Tolley (JCAP 2010)

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

The Galileon Frame

Compute√−γR[γµν ] for

�� ��γµν = gµν + π,µπ,ν (π ≡∫ √

D(φ)dφ)

Disformal Curvature

√−γR[γµν ] =

√−g[

1

γR[gµν ]− γ

((�π)2 − π;µνπ

;µν)

+∇µξµ]

with γ−1 ≡√g/γ =

√1 + π,µπ,µ

Quartic DBI Galileon

π = brane coordinate in 5th dim.

- De Rham & Tolley (JCAP 2010)

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

The Galileon Frame

Compute√−γR[γµν ] for

�� ��γµν = gµν + π,µπ,ν (π ≡∫ √

D(φ)dφ)

Disformal Curvature

√−γR[γµν ] =

√−g[

1

γR[gµν ]− γ

((�π)2 − π;µνπ

;µν)

+∇µξµ]

with γ−1 ≡√g/γ =

√1 + π,µπ,µ

Quartic DBI Galileon

π = brane coordinate in 5th dim.

- De Rham & Tolley (JCAP 2010)

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013)

γµν = C(φ)gµν +D(φ)φ,µφ,ν

Einstein Frame: LEF =√−gR[gµν ] +

√−γLM (γµν , ψ)

�� ��Einstein

gµν→C−1gµν))

gµν→gµν−DC φ,µφ,νuu

gµν → 1C gµν −

DC φ,µφ,ν

��

D ⊂ matteroo

��

Galileon

))

Disformal

uuD ⊂ gravity //

OO

Jordan

Jordan Frame: LJF =√−γR[γµν ] +

√−gLM (gµν , ψ)

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

The Einstein Frame

LEF =√−g(

R

16πG+ Lφ

)+√−γLM (γµν , ψ)

γµν = C(φ)gµν +D(φ)φ,µφ,ν

Gµν = 8πG(Tµνm + Tµνφ )

Matter-field interaction: ∇µTµνm = −Qφ,ν

Q =D

C∇µ (Tµνm φ,ν)− C ′

2CTm +

(D′

2C− DC ′

C2

)φ,µφ,νT

µνm

Kinetic mixing Conformal Disformal

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

The Einstein Frame

LEF =√−g(

R

16πG+ Lφ

)+√−γLM (γµν , ψ)

γµν = C(φ)gµν +D(φ)φ,µφ,ν

Gµν = 8πG(Tµνm + Tµνφ )

Matter-field interaction: ∇µTµνm = −Qφ,ν

Q =D

C∇µ (Tµνm φ,ν)− C ′

2CTm +

(D′

2C− DC ′

C2

)φ,µφ,νT

µνm

Kinetic mixing Conformal Disformal

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

The Einstein Frame

LEF =√−g(

R

16πG+ Lφ

)+√−γLM (γµν , ψ)

γµν = C(φ)gµν +D(φ)φ,µφ,ν

Gµν = 8πG(Tµνm + Tµνφ )

Matter-field interaction: ∇µTµνm = −Qφ,ν

Q =D

C∇µ (Tµνm φ,ν)− C ′

2CTm +

(D′

2C− DC ′

C2

)φ,µφ,νT

µνm

Kinetic mixing Conformal Disformal

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

Consequences of Kinetic Mixing - Koivisto, Mota, MZ (PRL 2012)

Static matter ρ(~x) + non-rel. p = 0[1 +

C − 2DX

]φ+ F(~∇φ,µ, φ,µ, ρ) = 0

Disformal Screening Mechanism

φ ≈ −D′

2Dφ2 + C ′

(φ2

C− 1

2D

)(If Dρ→∞)

φ(~x, t)�� ��independent of ρ(~x) and ∂iφ

⇒ No ~∇φ between M1,M2 ⇒�� ��No fifth force!

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

Consequences of Kinetic Mixing - Koivisto, Mota, MZ (PRL 2012)

Static matter ρ(~x) + non-rel. p = 0[1 +

C − 2DX

]φ+ F(~∇φ,µ, φ,µ, ρ) = 0

Disformal Screening Mechanism

φ ≈ −D′

2Dφ2 + C ′

(φ2

C− 1

2D

)(If Dρ→∞)

φ(~x, t)�� ��independent of ρ(~x) and ∂iφ

⇒ No ~∇φ between M1,M2 ⇒�� ��No fifth force!

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

Consequences of Kinetic Mixing - Koivisto, Mota, MZ (PRL 2012)

Static matter ρ(~x) + non-rel. p = 0[1 +

C − 2DX

]φ+ F(~∇φ,µ, φ,µ, ρ) = 0

Disformal Screening Mechanism

φ ≈ −D′

2Dφ2 + C ′

(φ2

C− 1

2D

)(If Dρ→∞)

φ(~x, t)�� ��independent of ρ(~x) and ∂iφ

⇒ No ~∇φ between M1,M2 ⇒�� ��No fifth force!

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

Disformal Screening: Potential Signatures

Assumptions:

Static ∂tρ = 0

Pressureless Dp < X ≡ C − 2DX

Neglect pρ ,

(~∂φ∂tφ

)2, XDρ ,

XDρV

′/φ , Γµ00φ,µ/φ ∼ 0

Potential Signatures

Matter velocity flows: T 0i → Terms ∝ φ;0i and φ φ,iSuppressed by v/c → Binary pulsars?

Pressure: Instability and effects on radiation

Strong gravitational fields: Γµ00φ,µ not suppressed by DρΓr00 = GM

r3(r − 2GM) → Black holes?

Spatial Field Gradients: Evolution independent of ∂iφ

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

Disformal Screening: Potential Signatures

Assumptions:

Static ∂tρ = 0

Pressureless Dp < X ≡ C − 2DX

Neglect pρ ,

(~∂φ∂tφ

)2, XDρ ,

XDρV

′/φ , Γµ00φ,µ/φ ∼ 0

Potential Signatures

Matter velocity flows: T 0i → Terms ∝ φ;0i and φ φ,iSuppressed by v/c → Binary pulsars?

Pressure: Instability and effects on radiation

Strong gravitational fields: Γµ00φ,µ not suppressed by DρΓr00 = GM

r3(r − 2GM) → Black holes?

Spatial Field Gradients: Evolution independent of ∂iφ

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

Disformal Screening: Potential Signatures

Assumptions:

Static ∂tρ = 0

Pressureless Dp < X ≡ C − 2DX

Neglect pρ ,

(~∂φ∂tφ

)2, XDρ ,

XDρV

′/φ , Γµ00φ,µ/φ ∼ 0

Potential Signatures

Matter velocity flows: T 0i → Terms ∝ φ;0i and φ φ,iSuppressed by v/c → Binary pulsars?

Pressure: Instability and effects on radiation

Strong gravitational fields: Γµ00φ,µ not suppressed by DρΓr00 = GM

r3(r − 2GM) → Black holes?

Spatial Field Gradients: Evolution independent of ∂iφ

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

Disformal Screening: Potential Signatures

Assumptions:

Static ∂tρ = 0

Pressureless Dp < X ≡ C − 2DX

Neglect pρ ,

(~∂φ∂tφ

)2, XDρ ,

XDρV

′/φ , Γµ00φ,µ/φ ∼ 0

Potential Signatures

Matter velocity flows: T 0i → Terms ∝ φ;0i and φ φ,iSuppressed by v/c → Binary pulsars?

Pressure: Instability and effects on radiation

Strong gravitational fields: Γµ00φ,µ not suppressed by DρΓr00 = GM

r3(r − 2GM) → Black holes?

Spatial Field Gradients: Evolution independent of ∂iφ

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

Disformal Screening: Potential Signatures

Assumptions:

Static ∂tρ = 0

Pressureless Dp < X ≡ C − 2DX

Neglect pρ ,

(~∂φ∂tφ

)2, XDρ ,

XDρV

′/φ , Γµ00φ,µ/φ ∼ 0

Potential Signatures

Matter velocity flows: T 0i → Terms ∝ φ;0i and φ φ,iSuppressed by v/c → Binary pulsars?

Pressure: Instability and effects on radiation

Strong gravitational fields: Γµ00φ,µ not suppressed by DρΓr00 = GM

r3(r − 2GM) → Black holes?

Spatial Field Gradients: Evolution independent of ∂iφ

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

The Vainshtein Radius - Vainshtein (PLB 1972)

? Non-linear derivative interactions L ⊃ +�φX/m2 + αφTm

⇒ �φ+m−2((�φ)2 − φ;µνφ

;µν)= αMδ(r)

φ ∝{r−1 if r � rV√r if r � rV

Vainshtein radius rV ∝ (GM/m2)1/3

? Disformal coupling: L ⊃ −γ((�φ)2 − φ;µνφ

;µν)

(Jordan Fr.)

�φ = 0 ⇒ φ =S

rEinstein Fr.

D < 0 ⇒ asymptotic φ0 = Sr breaks down at rV =

(DS2

C

)1/4

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

The Vainshtein Radius - Vainshtein (PLB 1972)

? Non-linear derivative interactions L ⊃ +�φX/m2 + αφTm

⇒ �φ+m−2((�φ)2 − φ;µνφ

;µν)= αMδ(r)

φ ∝{r−1 if r � rV√r if r � rV

Vainshtein radius rV ∝ (GM/m2)1/3

? Disformal coupling: L ⊃ −γ((�φ)2 − φ;µνφ

;µν)

(Jordan Fr.)

�φ =−QµνδTµνmC +D(φ,r)2

⇒ φ =S

r(if r →∞)

D < 0 ⇒ asymptotic φ0 = Sr breaks down at rV =

(DS2

C

)1/4

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Disformally Related FramesScreening the Force

The Vainshtein Radius - Vainshtein (PLB 1972)

? Non-linear derivative interactions L ⊃ +�φX/m2 + αφTm

⇒ �φ+m−2((�φ)2 − φ;µνφ

;µν)= αMδ(r)

φ ∝{r−1 if r � rV√r if r � rV

Vainshtein radius rV ∝ (GM/m2)1/3

? Disformal coupling: L ⊃ −γ((�φ)2 − φ;µνφ

;µν)

(Jordan Fr.)

�φ =−QµνδTµνmC +D(φ,r)2

⇒ φ =S

r(if r →∞)

D < 0 ⇒ asymptotic φ0 = Sr breaks down at rV =

(DS2

C

)1/4

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Conclusions

Life beyond the conformal coupling: Dφ,µφ,ν

→ don’t be a conformist!

New frames: Galileon & Disformal

Einstein Frame: simpler Eqs. & physical insight

Screening mechanisms:

? Disformal: Dρ→∞ field eq. independent of ρ

? Vainshtein: r � rV ⇒ Fφ � FG

Open questions & potential applications (e.g. Cosmology)

May the force not be with you!

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Backup Slides

Miguel Zumalacarregui May the force not be with you

IntroductionResults

Properties of the Field Equation

Canonical scalar field Lφ = X − V , solve for ∇∇φ

Mµν∇µ∇νφ+C

C − 2DXQµνTµνm − V = 0

Mµν ≡ gµν− DTµνmC − 2DX

, Qµν ≡C ′

2Cgµν+

(C ′D

C2− D′

2C

)φ,µφ,ν

Coupling to (Einstein F) perfect fluid Tµν = diag(ρ, p, p, p)

M00 = 1 + Dρ

C−2DX , D, ρ > 0⇒ no ghosts

Mii = 1− Dp

C−2DX , ⇒ potential instability if p > C/D −X

- Does it occur dynamically?

- Consider non-relativistic coupled species Mii > 0

Miguel Zumalacarregui May the force not be with you

IntroductionResults

(Some) Cosmology

ρ+ 3Hρ = Q0φ ,

- Pure Conformal Q(c)0 = C′

2C ρ

- Pure Disformal Q(d)0 ≈ ρφ

(D′

2D (1 + wφ)− V ′

2V (1− wφ))

Simple models give

good background expansion with Λ = 0

too much growth:

Geff

G− 1 =

Q20

4πGρ2

But much room for viable models

Miguel Zumalacarregui May the force not be with you

top related