medical imaging and virtual medicine - ggg

Post on 11-Feb-2022

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Dirk Bartz, Visual Computing for Medicinebartz@gris.uni-tuebingen.de

Lecture 2:

Histograms, Classification,Segmentation

Medical Imaging and Virtual Medicine

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Literature (1)

Paper:• G. Kindlmann, D. Durkin: Semi-Automatic Generation of

Transfer Functions for Direct Volume Rendering, Proc. IEEE Symposium on Volume Visualization, 1998.

• V. Pekar, R. Wiemker, D. Hempel: Fast Detection of Meaningful Isosurfaces for Volume Data Visualization, IEEE Visualization, 2001.

• J. Kniss, G. Kindlmann, C. Hansen: Interactive Volume Rendering Using Multi-Dimensional Transfer Functions and Direct Manipulation Widgets, IEEE Visualization, 2001.

2

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Outline

Histograms and Classification

Windowing

Histogram Filter

Segmentation

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (1)

• Recall:Volume Data are typically 8-12bit deep

• Value distribution of voxels of dataset is called histogram:• With 8bit: value distribution of 256

possible data values• With 12bit: 4096 possible data values

3

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (2)

MRI Dataset, T2 weighted (fluids)

Linear histogram

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (3)

Logarithmic histogram

MRI Dataset, T2 weighted (fluid)

(filtered brighter)

4

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (4)

MRI Dataset, T2 weighted (fluid)

Scaled linear histogram (filtered brighter)

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (5)

MRI Dataset, T2 weighted (fluid)

Scaled linear histogram (filtered brighter)

5

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (6)

MRI Dataset, T2 weighted (fluid)

Scaled linear histogram (filtered brighter)

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (7)

MRI Dataset, T2 weighted (fluid)

Scaled linear histogram (filtered brighter)

6

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (8)

• Histogram are important for data analysis, but show only materials

• Quest for material interfaces• But: frequency of voxel value is often not

sufficient

• Gradient magnitude exposes material boundary:• High gradient magnitude

large differences• Small gradient magnitude

homogeneous area

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (9)

Artificial Dataset: Low-Pass filtered Sphere

(enlarged)Linear histogram

Not very informative!

7

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (10)

Artificial Dataset: Low-Pass filtered Sphere

(enlarged)

Gradient histogram (f´(v))Voxel value f(v)

∇v

|f´(v)|

Frequency Intensity

[Kindlmann, Durkin, VolVis 1998.]

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (11)

More Information:First directional derivative of voxel values f´(x) along gradient:

Maximum indicates material interface

Second directional derivative of voxel values f´´(x) along gradient:

Zero-crossing indicates material interface

8

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (12)

Voxel value f(v), f´(v), f´´(v) at material interface

From:[Kindlmann, Durkin, VolVis 1998.]

f(v)f´(v)f´´(v)

v

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

• First derivative approximated from gradient magn‘:

D^ f = ||∇f||

• Second derivative not easy to construct

• Approximation by gradient magnitude ofgradient field

Histogram and Classification (13)

∇f

Direction

9

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (14)

Position x, voxel value f(v), and gradient f´(v)

v

v

f(v)

f(v)

f´(v)

f´(v)

From:[Kindlmann, Durkin, VolVis 1998.]

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (15)

Position x, voxel value f(v), and f´´(v)

f(v)

f(v)

f´´(v)

f´´(v)

v

v From:[Kindlmann, Durkin, VolVis 1998.]

10

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (16)

Histogram Volume:Voxel value f(v), gradient f´´(v), and f´´(v)

f(v)

f(v)

f´´(v)

f´´(v)

f´(v)f´(v)

From:[Kindlmann, Durkin, VolVis 1998.]

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (17)

• Don’t display full value range for f´(v) and f´´(v); otherwise material interfaces can be missed

• Histogram representation is projected from histogram volume in viewing direction

f´(v) f´´(v)

f(v) f(v)

Projected along: f´´(v), f´(v)

11

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (18)

Cylinder and embedded Cylinder

Dataset

One material interface(one maximum/zero-crossing)

Three material interfaces(three maximazero-crossings)

f´(v)

f´(v) f´´(v)

f´´(v)

f(v) f(v)

From: [Kindlmann, Durkin, VolVis 1998.]

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (19)

More Examples

From: [Kindlmann, Durkin, VolVis 1998.]

12

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (20)

Variation of Method:[Pekar et al. IEEE Visualization, 2001.]

• Examines further feature criterions:• Total Gradient Feature Curve• Average gradient• Surface of isosurface• Volume of isosurface (count voxels)

• Combines criterion into decision function

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (21)

Total Gradient Feature Curve:• Calculates Laplace-Operator for every voxel:

2. derivative considered Zero-crossing at material interfaces)

• Accumulates results in voxel value (like histogram)

• Results in Laplace-weighted histogram

13

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (22)

Total Gradient Feature Curve:• Features are emphasized by Maxima

Image slice Total Gradient Feature Curve 3D Rendering

From: [Pekar et al., IEEE Vis 2001.]

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (23)

Mean Gradient Feature Curve:• Divides Total Gradient Feature Curve

by measured surface along isosurface

• More independent from actual size

14

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (24)

Mean Gradient Feature Curve:• Peak size more independent of actual feature size

Image slice Mean Gradient Feature Curve 3D Rendering

From: [Pekar et al., IEEE Vis 2001 ]

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (25)

More useful metrics for Data Analysis:• Statistics of 1. order:

• Local, average gray value

mk(p(x,y)) = 1 / N ∑∑v(x+i,y+j)

• Local varianceσ2

k(p(x,y)) = 1 / (N-1) ∑∑(v(x+i,y+j) – mk(p))2

i j

k k

i j

k k

15

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram and Classification (26)

More useful ...• Measure for smoothness R:

If σ2 gets small, R approaches 0 and indicates homogeneous/smooth region.

11 + σ2(p)R = 1 -

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Outline

Histograms and Classification

Windowing

Histogram Filter

Segmentation

16

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Windowing (1)

Why Windowing?• Volume Data are usually 12-16bit/voxel deep

• Output devices (screen) only have 8bit/color depth, or only 8bit gray value depth

• Value range of dataset must be mapped into 8bit

Windowing

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Windowing (2)

12bit Volume Dataset, mapped into positive range

0 4095

Logarithmic histogram

2047 3100

8bit window

17

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Windowing (3)

Mapping of 12bit value range into 8bit:• Selected value range is named window

• Set:• Window width• Window position (center)

• Window width controls contrast:• More wide, the smaller the contrast• More narrow, the larger the contrast

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Windowing (4)

Window Width:• Enlarging the window range with downsampling:

eg. 4bits are mapped into 1bit,or the range of 0..15 into 0..1• Loss of accuracy

• Values below/above of window are mapped on window limits: 0 or 255

18

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Windowing (5)

Window Position:• Position marks features

• Features outside of window cannot be differentiated any more

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Windowing (6)

0 40952047

Window width

Window position

19

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Windowing (7)

0 40952047

Window width withreduced contrast,but enlargedrange

Window position marks feature

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Windowing (8)

Different Window Ranges

Position: 1023, Width: 4096 Position: 0, Width: 400

20

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Windowing (9)

• Maps linearly into window range

• Size of different features can be different

• Non-linear windowing would be good(TechReport, using ToneMapping)

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Outline

Histograms and Classification

Windowing

Histogram Filter

Segmentation

21

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (3)

Histogram Stretching:• Not all volume-/image data exploit whole

value range

• Like Window-to-Viewport-mapping (CG 101)

• New lower limit implicitly 0

Is(x,y) = gmax

Ie(x,y) – min(Ie)

max(Ie) – min(Ie)

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (4)

Histogram Stretching:• Not all volume-/image data exploit whole

value range

22

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (5)

Histogram Stretching:

Original Image Image after Stretching

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (6)

Histogram Stretching:

Original Image Image after Stretching

23

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (7)

Selective Histogram Stretching :• Partial range is mapped into larger range

• Useful to compensate for noise(not used histogram range)

• Piecewise linear

• Logarithmical

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (8)

Selective Histogram Stretching:• Partial range is mapped into larger range

24

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (9)

Selective Histogram Stretching:• Piecewise linear scaling:

• Regular stretching of partial range• Other ranges are kept identical (might be

translated), or culled

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (10)

Selective Histogram Stretching:• Logarithmic scaling:

• Certain ranges are enhanced• More like human vision

gs(g + c3) = gmax

log(c1+ g )– log(c1)

log(c2) – log(c1)

c2 - c1

gmax

with c3 as translation in histogram, c1,c2 controlsteepness, and g as histogram.

25

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (11)

Selektive Histogram Stretching:• Logarithmic

scaling:

with

c1= 5, c2 = 15,

c3= 0,

gmax = 50.

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (12)

Histogram Equalization:• Not all volume dataset exploit range equally

• Uses relative accumulation frequency as metric

• Usually not invertible

• No perfect results, due to discrete nature of data

26

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (13)

Histogram Equalization:Histogram

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (14)

Histogram Equalization:Accumulation frequency

27

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (15)

Histogram Equalization:

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (16)

Histogram Equalization:

Original Image Image after Equalization

28

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (17)

Histogram Equalization:

Original Image Image after Equalization

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Histogram Filter (18)

Image processing applets at

• http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/Overview.htmlKursbuch Applet-Index Bildverarbeitung

Histogramm-Manipulation

(in German only, sorry)

29

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Outline

Histograms and Classification

Windowing

Histogram Filter

Segmentation

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (1)

What is Segmentation?• Segmentation is identification of

structures/objects (eg. organs) in image / volume data.

• Assign a semantic into data

• Unfortunately: Many structures are easy to detect with eyes, but difficult with algorithms

• Merging criterion can be local or regional.

30

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (2)

ComputedTomography:

Bone

SegmentedMastoid

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (3)

Classification of Segmentation Approaches:

Model-based

Level-Sets

Region-basedRegion Growing

Fuzzy Connectedness

Markoff Random Field

Scale Space

Contur-basedEdge Detectors

Snakes

LifeWire

Watershed-transformation

LocalIntensity

Texture Analysis

31

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (5)

Segmentation:• Good data acquisition saves plenty of

segmentation work

• Sources of issues:• Partial volume effect• Insufficient resolution• Insufficient contrast• Optimal: High Intensity, Neighborhood low

intensity

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (6)

Examples for good Contrast:

MRI TSE:Fluidfilled cavities

MRI TOF:Blood vessels

MRI 3D CISS:Fluid filled cavities

Rot. AngiographyContrast enhanced cavities

32

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (7)

Ventricles / background

Corpus callosum / brain tissue

MRI Flash/T1

Examples of poor Contrast

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (8)

CT Angiography:• Good bone contrast

• Good blood vessel contrast

• Poor ventricle contrast (noise)

33

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (8)

Bone

Blood vessel

Ventricle

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (9)

[Image of Hastreiter et al.,Univ. Erlangen-Nürnberg]

CT Angiography:

34

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (10)

• Binary Segmentation often leads to blocky appearance due to interpolation artifacts.(similar to staircase artifacts)

Add boundary layer

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (11)

Region-based:• Identifies Objects in 2D/3D regions

• Considers voxel neighborhood

• Needs merging criterion

35

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (12)

Merging Criterions:• Distance metrics are measures for the

similarity of two regions (voxel sets), which might be merged.• Gray value distance (voxel intensity)• Neighbors and same gray value interval• Homogeneity (Texture analysis)

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (13)

Merging Strategies of two regions A,B: pA∈A, pB∈B, E is separation edge of A,B

• Single Linkage: At least one voxel pair (pA,pB) on E satisfies distance metric

• Contiguity Constraint Complete Linkage: All voxel pairs (pA,pB) on E satisfy distance metric

36

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (14)

Merging Strategies of two regions A,B: pA∈A, pB∈B, E is separation edge of A,B

• Contiguity Constraint Average Linkage: Average of all voxel pairs on E satisfy Distance metric D , < D

• Centroid Linkage: Average of A,B (not only E)

, < D

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (15)

Merging Strategies of two Regions : • Complete Linkage: Centroid

Linkage and difference of grayvalue intervals of A,B must bebelow threshold

( , )< D and (( , ),( , )) < D

37

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Segmentation (16)

Merging Strategies of many regions :• Sequence is important (not commutative).

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (1)

Tübinger Middle Ear Implant:[M. Maassen, HNO Tübingen]

Transformer

Microphone

Main

38

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (2)

Brain

Outer ear

Mastoid

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (3)

• Region-oriented segmentation

• Step-wise refinement of over-segmented image data

Segmentation Correction

• Object mask• Morphology• Clipping• Connected components

• Local features• 2d/3d region growing

39

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (4)

Segmentation Correction3d region growing

M1

Homogeneous image regionZK

M2

Morphological OpeningZK

2d DilatationM3

Subtraction: M1 – M3ZK

ClippingZK

M4

3d region growing.

2d region growing.M5 Subtraction: M4 – M5

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (5)

Over-segmentationOriginal

M1

3d region growing.M1

40

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (6)

Anatomical connectionsImage artifacts

3d region growing.M1

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (7)

Segmentation Correction3d region growing.

M1

Homogeneous Image RegionZK

M2

Morphological OpeningZK

2d DilatationM3

Subtraction: M1 – M3ZK

ClippingZK

M4

3d region growing.

2d region growing.M5 Subtraction: M4 – M5

41

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (8)

Homogeneous Image RegionZK

M2

Morphological OpeningZK

2d DilatationM3

Subtraction: M1 – M3ZK

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (9)

Homogeneous Image RegionZK

M2

Morphological OpeningZK

2d DilatationM3

Subtraction: M1 – M3ZK

42

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (10)

Homogeneous Image RegionZK

M2

Morphological OpeningZK

2d DilatationM3

Subtraction: M1 – M3ZK

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (11)

Segmentation Correction3d region growing.

M1

Homogeneous Image RegionZK

M2

Morphological OpeingZK

2d DilationM3

Subtraction: M1 – M3ZK

ClippingZK

M4

3d region growing.

2d region growing.M5 Subtraction: M4 – M5

43

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (12)

3d region growing. ClippingZK

M4→ Limited grow

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (13)

3d region growing. ClippingZK

M4

343536

44

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (14)

Segmentation Correction3d region growing.

M1

Homogeneous Image RegionZK

M2

Morphological OpeningZK

2d DilatationM3

Subtraction: M1 – M3ZK

ClippingZK

M4

3d region growing.

2d region growing.M5 Subtraction: M4 – M5

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

48

Example Segmentation (15)

2d region growing.M5 Subtraction: M4 – M5

4849 4950 50

45

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (16)

Result of Segmentation:

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (17)

Segmentation of bordering Mastoid Bone

Expansion of Mask

46

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Example Segmentation (18)

Result of Segmentation:

Bartz@GRIS.Uni-Tuebingen.DEVCM 2005

Image Source

• Department of Neuroradiology, University Hospital Tübingen

• Department of Radiology,University Hospital Tübingen

• Kindlmann, Durkin: VolVis 1998

• Pekar et al. IEEE Visualization 2001.

top related