metal-catalyzed late stage c-h functionalization a powerful tool in total synthesis 3rd year seminar...

Post on 02-Jan-2016

223 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

METAL-CATALYZED LATE STAGE C-H FUNCTIONALIZATION

A powerful tool in total synthesis

3rd year seminarIoulia Gorokhovik 23.11.2011

2

New challenges in total synthesis

In the last decades, development of new techniques and methods has enabled chemists to synthesize structures of increasing complexity.

3

New challenges in total synthesis

Nicolaoou, K.C.; Aversa, R.J. Isr. J. Chem. 2011, 51, 359 – 377

Largest non polymericmolecule found in natureand most toxic non-peptide

4

New challenges in total synthesis

Hendrickson, J. B. J. Am. Chem. Soc. 1975, 97, 5784.Gaich, T.; Baran, P.S. J. Org. Chem. 2010, 75, 4657–4673.

In the last decades, development of new techniques and methods has enabled chemists to synthesize structures of increasing complexity.

New challenge : «Aiming for the ideal synthesis »

Which “...creates a complex molecule...in a sequence of only construction reactions involving no intermediary refunctionalizations, and leading directly to the target, not only its skeleton but also its correctly placed functionality.” (Hendrickson, 1975)

5

What is C-H activation ?

• Principle : Functionalization of unactivated C-H bonds

• Challenge :Find suitable catalysts and selectively functionalize one single C-H bond of a complex structure.

• Prof Robert Bergman, Berkeley :

"If you asked people ten years ago whether anyone would ever come up with a catalytic method to do this, they would have said no. I don't think it is outrageous to say that in five or ten years there will be commercial applications.“ (Nature 2006, 440, 390-391).

C FG1 C FG2

C FG1 C FG2 C C

Traditionnal approach : C-H activation approach

C H C FG

C H C FG C C

Godula, K.; Sames, D. Science, 2006, 312, 67-72.

6

Why is it powerful for total synthesis ?• Complementary approach to classical transformations

• Access to multiple structural analogs : in theory any C-H bond could be functionalized

• Mild conditions : adapted for complex structure transformations

• «Green chemistry» : atom economy and reduction of waste

• Shorter routes to natural products, no need to functionalize the substrate and rapid complexity generation

Godula, K.; Sames, D. Science, 2006, 312, 67-72.Davies, H.M.L.; Manning, J.R. Nature, 2008, 451, 417-424.

O

HN

OH

7

Outline

1. The beginnings of C-H activation

2. Coordination-directed metal insertion

3. Metal-catalysed carbene and nitrene insertion

C FG1 C FG2

C FG1 C FG2 C C

Traditionnal approach : C-H activation approach

C H C FG

C H C FG C C

Godula, K.; Sames, D. Science, 2006, 312, 67-72.

8

THE BEGININGS OF C-H ACTIVATIONRadical intramolecular chemistry

9

The principleX

Y HX

H

radical formation

H-transfer

XH

XH FG

radical trapping

Godula, K.; Sames, D. Science, 2006, 312, 67-72.Löffler, k.; Kober, S Berichte, 1909, 42, 3431.

Chemistry started and developed in the 1800’s by Hoffmann : study of halogenoamines.

First total synthesis using C-H activation : nicotine in 1909 by Löffler.

Known as the Hoffmann-Löffler-Freytag reaction.

10

The Hoffmann-Löffler-Freytag reaction

N

NMeBr

N

NMe

N

NMeH

N

HNMeBr

N

NMe

radical formation H-transferradical trapping

nucleophilic substitution

nicotine

Löffler, K.; Kober, S Berichte, 1909, 42, 3431.

First total synthesis using C-H activation : nicotine in 1909 by Löffler.

Later used by E.J. Corey and recently by P. Baran.

11

C-H FUNCTIONALIZATION BY DIRECTED METAL INSERTON

12

The principle

R1 R2

HDG -H+

R1 R2

DG MLn

MLn

R1 R2

DG XX = C, O, N, Hal

1-2 1-2 1-2

DG = directing group

XR1

H

MLn

FG-R

XR1

MR

H

XR1

R

sp3 bonds

sp2 bonds

• Possible with sp2 and sp3 C-H bonds.• Use of heteroatomic functional group to direct the metallation of the desired C-H

bond

Godula, K.; Sames, D. Science, 2006, 312, 67-72.

13

Syntheses of alkaloids rhazinilam, rhazinal and rhazinicine

Isolated in 1970 and 1998-1999.Promising starting point for the development of anti-cancer agents.Syntheses : Sames in 2000 and 2002

Trauner in 2005 and 2009 Gaunt in 2008

N

NH

O

N

NH

O

N

NH

O

CHO O

(-)-rhazinilam (-)-rhazinal (-)- rhazinicine

Banerji, A.; Majumder, P. L.; Chatterjee, A. G. Phytochemistry 1970, 9, 1491– 1493.Kam,T-S.; Tee, Y-M.; Subramaniam , G. Natural Product Letters, 1998, 12, 307-310.Kam, T.S.; Subramaniam, G.; Chen, W. Phytochemistry 1999, 51, 159.

14

Total synthesis of (-)-rhazinilam

Le Floc’h, D.; Gouault, N.; David, M.; van de Weghe, P. ARKIVOC 2010, 247-259.Johnson, J.A.; Sames, D. J. Am. Chem. Soc. 2000,122, 6321-6322.

N

N

O

OMe

NH2

N

O

OMe

H2NNH O

N

RhazinilamH

Amino group close to the ethyl group : favorable scenario

Sames, 2002 : by selective platinium-mediated sp3 C-H insertion/β-H elimination

15

Total synthesis of (-)-rhazinilam

Le Floc’h, D.; Gouault, N.; David, M.; van de Weghe, P. ARKIVOC 2010, 247-259.Johnson, J.A.; Sames, D. J. Am. Chem. Soc. 2000,122, 6321-6322.

N

NH O

N

Rhazinilam

N

O

OMe5 steps

NH2

Schiff base preparation

[Me2Pt(µ-SMe2)]2 stoechio.N

O

OMe

N Ph

NPt

TfOH- MeH

N

OOMe

N

Ph N

Pt+

N

OOMe

N

Ph N

Pt+H

70°C, 60h 90%

Racemic : auxiliary group containing a pyridine and a Schiff base Ph has a dramatic effect (decomposition with H)Use of a stoechimoetric amount of cationic Pt

isolated and cristallised

Sames, 2002 : by selective platinium-mediated sp3 C-H insertion/β-H elimination

16

Total synthesis of (-)-rhazinilam

Le Floc’h, D.; Gouault, N.; David, M.; van de Weghe, P. ARKIVOC 2010, 247-259.Johnson, J.A.; Li, N.; Sames, D. J. Am. Chem. Soc. 2002,124, 6900-6903.

Sames, 2002 : by selective platinium-mediated sp3 C-H insertion/β-H elimination

Asymmetric : differentiation of the enantiotopic Et

Chiral auxiliary group containing an oxazoline and a Schiff baseUse of a stoechimoetric amount of cationic Pt

Bulkier R : better selectivity but lower conversionDiastereoselectivity : from 3:1 to 20:1

17

Total synthesis of rhazinilam

Le Floc’h, D.; Gouault, N.; David, M.; van de Weghe, P. ARKIVOC 2010, 247-259.Bowie, A.L.; Hugues, C.C.; Trauner, D. Org. Lett. 2005, 7,5207-5209.

Trauner, 2005: by direct cross coupling reactionIdea :

N

NH

O

N

HN

O

IOO

OTs

H

COOMe

18

Total synthesis of rhazinilam

Le Floc’h, D.; Gouault, N.; David, M.; van de Weghe, P. ARKIVOC 2010, 247-259.Bowie, A.L.; Hugues, C.C.; Trauner, D. Org. Lett. 2005, 7,5207-5209.

Trauner, 2005, rhazinilam: by direct cross coupling reaction

N

NH

O

N

N

O

IOO

OTs3 steps MOM 10% mol Pd(OAc)2

K2CO3 47%

Me2NPCy3

10 mol%

N

N

O

[Pd]+

MOM

I-

N

N

O

Pd

MOM

-HI

N

N

OMOM

rhazinilam

-PdLn

Protective group crucial for the reaction

COOMe COOMe

COOMe

COOMe

H

19

Total synthesis of rhazinal

N

NH

O

N

N

O

I

MOM 10% mol Pd(OAc)2 K2CO3 43%

Me2NPCy3

10 mol%

N

N

OMOM

rhazinal

CHOCHO CHO

H

N

OOEt

H

Pd(OAc)2 10 mol% tBuOOH

dioxane, AcOH, DMSO 45°C 69%

N

OEt

O

N

OOEt

I

CHO

Pd(OAc)2 6 mol%TBAB, TEA

acetonitrile, H2O 45°C 75%

N

OEt

O

Asymmetric versions of this Heck reactiongave low yields and ees.

OHC

Trauner, 2009, rhazinal: by direct cross coupling reaction

Bowie, A.L.; Hugues, C.C.; Trauner, D. Org. Lett. 2005, 7,5207-5209.Bowie, A.L.; Trauner, D. J. Org. Chem. 2009, 74, 1581-1586.Le Floc’h, D.; Gouault, N.; David, M.; van de Weghe, P. ARKIVOC 2010, 247-259.

20

Total synthesis of rhazinicine

Le Floc’h, D.; Gouault, N.; David, M.; van de Weghe, P. ARKIVOC 2010, 247-259.Beck, E.M.; Hatley, R.; Gaunt, M.J. Angew. Chem. Int. Ed. 2008, 47, 3004-3007.

NH O

N

Rhazinicine

O

NH2

O

NO

OHoxidativecyclization

O2N

NMe3Si

OCOOEt

intermolecular C-H arylation

NBoc

SiMe3

NO2

I

H H

Gaunt, 2008 : by C-H borylation/Suzuki coupling and oxidative cyclization

21

Total synthesis of rhazinicine

Le Floc’h, D.; Gouault, N.; David, M.; van de Weghe, P. ARKIVOC 2010, 247-259.Beck, E.M.; Hatley, R.; Gaunt, M.J. Angew. Chem. Int. Ed. 2008, 47, 3004-3007.Also in 2011 : Liao, X.; Stanley, L.M.; Hartwig, J.F. J. Am. Chem. Soc. 2011, 133, 2088-2091.

NMe3Si

NO2

I

Boc

1) 2mol% [IrCl(cod)]24mol% dtbpy, B2pin2 MW, 100°C

2) Suzuki conditions 78% one-pot

NMe3Si

Boc

NO2

O2N

NMe3Si

OCOOR

10mol% Pd(TFA)2

tBuOOBzDioxane/AcOH/DMSO30°C 53%

NH O

N

Rhazinicine

O

NO2

O

NO

OR

SiMe3

H

H

H

Gaunt, 2008 : by C-H borylation/Suzuki coupling and oxidative cyclization

22

Synthesis of (+)-lithospermic acid

OH

HOO O

O

OH

COOH

COOH

OH

OH

(+)-lithospermic acid

Isolated in 1975. Active component of traditional herbs.Potent and nontoxic anti-HIV activity.Synthetic challenge : appropriate protecting group strategy required.

First synthesis : by Ellman and Bergman in 2005 by Yu in 2011

O’Malley, S.J.; Tan, K.L.; Watzke, T.; Bergman, R.G.; Ellman, J.. J. Am. Chem. Soc. 2005, 127, 13496-13497..

23

Synthesis of (+)-lithospermic acid

OH

HOO O

O

OH

COOH

COOH

OH

OH

(+)-lithospermic acid

OMe

MeOOH

O

O

OMe

COOMe

COOMe

OMe

OMe

HO

OH

HOO O

OH

OH

COOH

rosmarinic acid

NR

O

OMe

OMe

OMe

MeOOC

H

H

Ellman and Bergman, 2005 : by C-H activation/hydroarylation

O’Malley, S.J.; Tan, K.L.; Watzke, T.; Bergman, R.G.; Ellman, J.. J. Am. Chem. Soc. 2005, 127, 13496-13497..

24

Synthesis of (+)-lithospermic acidEllman and Bergman, 2005 : by C-H activation/hydroarylation

O’Malley, S.J.; Tan, K.L.; Watzke, T.; Bergman, R.G.; Ellman, J.. J. Am. Chem. Soc. 2005, 127, 13496-13497..

O

OMe

OMe

NBn

O

OMe

MeOOC

H O

O

OMe

COOMe

OMe

OMe

cis only

1.[RhCl(coe)2]2, L2. HCl, H2O

89%

No L* gave a good enough selectivity and yield

OMe

OMe

N

O

OMe

MeOOC

H

O

O

OMe

COOMe

OMe

OMe

1.[RhCl(coe)2]2 10 mol%FcPCy2 30 mol%

2. HCl, H2O 88%, 73%ee

OMe

OMe

H

25

Synthesis of (+)-lithospermic acid

N

O

OMe

MeOOC

H

O

O

OMe

COOMe

OMe

OMe

1.[RhCl(coe)2]2 10 mol%FcPCy2 30 mol%

2. HCl, H2O 88%, 73%ee

after recrystallisation : 99%ee

OMe

OMe

H

OH

HOO O

O

OH

COOH

COOH

OH

OH

(+)-lithospermic acid10 steps, 5.9% yield

Ellman and Bergman, 2005 : by C-H activation/hydroarylation

O’Malley, S.J.; Tan, K.L.; Watzke, T.; Bergman, R.G.; Ellman, J.. J. Am. Chem. Soc. 2005, 127, 13496-13497..

26

Synthesis of (+)-lithospermic acid

OH

HOO O

O

OH

COOH

COOH

OH

OH

(+)-lithospermic acid

OMe

MeOO

O

OMe

COOMe

COOMe

OMe

OMe

OH

HOO O

OH

OH

COOH

rosmarinic acid

O

H

OOMe

COOR*

OMeMeO

H

HN2

Yu, 2011: by C-H olefination/C-H carbene insertion

Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 5767-5769..

27

Synthesis of (+)-lithospermic acid

O

OMe

COOR*

OMe

OMe

H

OOMe

H

HN2

OH

OMe

O O

O

N

OMe

OMe

Rh2(S-DOSP)2 0.5 mol%DCM, 23°C, 2h

85%, dr 8:1

Yu, 2011: by C-H olefination/C-H carbene insertion

Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 5767-5769..

28

Synthesis of (+)-lithospermic acid

basic hydrolysis

O

OMe

OMe

OMe

HO

OK+Pd(OAc)2 5 mol%

Ac-Ile-OH 5 mol%O2 (1 atm)

KHCO3 (2 eq)tAmyl-OH, 85°C, 2h 93%

OMe

MeOO O

O

OMe

COOMe

COOH

OMe

OMe

OMe

MeOO

COOMe

O

(+)-lithospermic acid

12 steps, 11% yield

Yu, 2011: by C-H olefination/C-H carbene insertion

Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 5767-5769..

O

OMe

COOR*

OMe

OMe

H

OOMe

H

HN2

OH

OMe

O O

O

N

OMe

OMe

Rh2(S-DOSP)2 0.5 mol%DCM, 23°C, 2h

85%, dr 8:1

29

C-H FUNCTIONALIZATION THROUGH METAL CARBENOID/NITRENOIDC-C and C-N bonds formation

30

The principle

Davies, H.M.L.; Manning, J.R. Nature, 2008, 451, 417-424. Davies, H.M.L.; Dick, A.R. Top. Curr. Chem. 2010, 292, 303-345.Davies H.M.L. Angew. Chem. Int. Ed. 2006, 45, 6422-6425.

Advantages :- Often the conditions are very mild- Catalyst very selective for diazo site : extremely tolerant of other functional groups- Catalyst very active : low loadings of catalyst (1 mol%)

HDG

MLn

GD

XDG

X

LnM LnM

Coordination-directed metallation

R1 R2

N2

R1 R2

MLn

HRa

RcRb

HRa

RcRb

R2R1

LnRh

Ra

RcRb

R2

R1H

Metal catalyzed carbene insertion

31

The catalyst and the carbenoid

LnMEWG

R2

LnMEWG

H

L = EW chiral ligand, modulating the electophilicity hence reactivityEWG = necessary for sufficient reactivityR2 = can modulate reactivity and selectivity

Catalyst : Dirhodium(II) catalysts mostly used. Copper (I) complexes also effective. Other metals generate too stable carbenoids for C-H functionalization.

The carbenoid has to be electrophilic enough to react with a C-H bond, but not too much for good regio and stereocontrol

Widely used in intramolecular reactions

LnMEWG

EWG

Highly electrophilic carbenoid formed

LnMEWG

EDG

Stabilised carbenoid : highly selective

Davies, H.M.L.; Manning, J.R. Nature, 2008, 451, 417-424. Davies, H.M.L.; Dick, A.R. Top. Curr. Chem. 2010, 292, 303-345.Davies H.M.L. Angew. Chem. Int. Ed. 2006, 45, 6422-6425.Davies H:M:L:, Beckwith, R.E.J. Chem. Rev. 2003, 103, 2861-2903.

More selective carbenoid

More reactive carbenoid

32

Which C-H bond ?Electronic, steric and conformational effects Electronic effects : C-H activation prefered on sites where a partial positive charge is stabilized.

5-membered rings favored over other size rings, if no EDG or conformational effects.Equatorial C-H bonds favored

Davies, H.M.L.; Manning, J.R. Nature, 2008, 451, 417-424. Davies, H.M.L.; Dick, A.R. Top. Curr. Chem. 2010, 292, 303-345. Davies H.M.L. Angew. Chem. Int. Ed. 2006, 45, 6422-6425. Davies H:M:L:, Beckwith, R.E.J. Chem. Rev. 2003, 103, 2861-2903.

EDG EWG

CH3

1° C-H sterically favouredelectronically disfavoured

2° C-H sterically favouredelectronically favoured

2° C-H sterically favouredelectronically disfavoured

3° C-H sterically disfavouredelectronically favoured

0.011 0.66 1

N

1700

BocO

2700 28,000

Relative rates and sites of insertion of methyl phenyldiazoacetate into various substrates at RT

33

Intramolecular C-H activation : the beginingUsed since the early 80’s

O

O

5 steps

29%

O

O

N2

COOMe Rh2(OAc)2

91%

O

O

COOMe

Symmetry destruction

5 steps 4%

O

COOMe

OPentenolactone E methyl ester

O4 steps

25% O

O

O

ON2

Rh2(OAc)2,33 mol%

43%

OO

O

O

9 steps 12%

Cane, 1984 :

Taber, 1984 :

Formation of 6-membered ring

H

H

Cane, D.E.; Thomas, P.J. J. Am. Chem. Soc. 1984, 106, 5295-5303.D. F. Taber, J. L. Schuchardt, J. Am. Chem. Soc. 1985, 107, 5289.

34

Intramolecular C-H activation

O

O

ON2

EtOOC

Rh2(OAc)2

87% O

O

H

COOEtO

2 steps

H

angular triquinane

H

Recently :

Srikrishna, A.; Sheth, Vishal M.; Nagaraju, G Synlett, 2011, 16, 2343-2346.

35

Intramolecular vs intermolecular C-H activation

Doyle, M.P.; Hu, W.; Valenzuela, M.V.; J. Org. Chem. 2002, 67, 2954.Davies, H.M.L.; Jin, Q. Tetrahedron Asymmetry , 2003, 14, 941.Davies, H.M.L.; Dick, A.R. Top. Curr. Chem. 2010, 292, 303-345.

OMe

TBDPSO

O

ON2

Rh2(4S-MPPIM)4 1 mol%DCM

68%, 93%ee

OMe

TBDPSO OO

5 more steps 42%

MeO

HO

OH

OH

OMe

(+)-imperanene

Doyle, 2002: intramolecular

Davies, 2002: intermolecular

OMe

TBSO

OTBS

OMe

N2 COOMe

Rh2(R-DOSP)4 1 mol%DMB, 50°C

43%, 91%ee

MeO

TBSO

COOMe

OTBS

OMe

2 more steps 87%

H

36

Intermolecular C-H activation

Davies, H.M.L.; Manning, J.R. Nature, 2008, 451, 417-424. Davies, H.M.L.; Hansen, T.; Hopper, D.W.; Panaro, S.A. J. Am. Chem. Soc, 1999, 121, 6509-6510.Thai, D.L.T; Sapko, M.T.; Reiter, C.T.; Bierer, D.E.; Perel, J.M. J. Med. Chem. 1998, 41, 591-601.Prashad, M.; Kim, H.Y.; Lu, Y.; Liu, Y.; Har, D.; Repic, O.; Blacklock, TJ.; Giannousis, P. J. Org. Chem., 1999, 64, 1750-1753.Y. Matsumura, Org. Lett., 1999, 1, 175-178

N

Boc

H

N2 Ph

COOMe

+1. Rh2(S-biDOSP)2 1mol%

2. CF3COOH

52%, 86% ee

NH

Ph

HCOOMe

4 eq Threo-methylphenidate

Ritalin, treatment for Attention Deficit Hyperactivity DisorderSome previous syntheses :

8 steps for Perel's group, in 10-27% yield, 99% optical purity9 steps for Prashad's group, in 13% yield, 99% optical purity5 steps for Matsumura's group, in 6% yield, 99% optical purity

Only 2 steps by C-H activation, 52% yield, 86%ee

Davies, 1999:

37

Intermolecular C-H activation

Davies, H.M.L.; Manning, J.R. Nature, 2008, 451, 417-424. Davies, H.M.L.; Stafford, D.G.; Hansen, T. Org. Lett. 1999, 1, 233-236.

Vinyl diazoacetates :

H

Possibility of cascade sequences : C-H activation/Cope rearrangement

Cl

Cl

N2 COOMe

Rh2(S-DOSP)4 1mol%

Hex, RT

Cl

Cl

RhCOOMe

H

60%, 99% ee

Cl

Cl

COOMe

Cl

Cl

NHMe

(+)-sertalineZolof t, antidepressant

38

N2

COOMeMe

MeOOC

Me

H

Rh2(R-DOSP)4

Me

Me

Me

Me

H

Me Me

erogorgiaene

Me

HO

MeO

OH

MeMeH

colombiasin A

Me

O

MeOH

OH

MeHMe

elisapterosin B

HR

racemic

enantiodivergent C-H activation/Coperearrangement

R

Me

Me

H

Me Me

Elisabethatriene

biosynthesis biosynthesis

Isolated from gorgonian coralsVery promisiong biological activities

Many synthetic studies and sytheses already published

3 very challenging stereogenic centersNo convenient neighboring group to assist stereocontrol

Total synthesis of (-)-colombiasin A, (-)-elisapterosin B and (+)-erogorgiaene

Davies, H.M.L.; Walji, A.M. Angew. Chem. Int. Ed. 2005, 44, 1733-1735.Davies, H.M.L.; Dai, X.; Long, M.S. J. Am. Chem. Soc. 2006, 128, 2485-2490.Davies, H.M.L.; Manning, J.R. Nature, 2008, 451, 417-424.

39

Existing strategies

Davies, H.M.L.; Dai, X.; Long, M.S. J. Am. Chem. Soc. 2006, 128, 2485-2490.

O

O

Me

R4O

R5

Me

H

Me

Me

MeO

MeOMe

OMe

O

OO

Pd(0)

Me

MeO

MeOMe

OMe

zH

Me

Nicolaou's strategy : Tsuji allylation : poor regiocontrol, wrong epimer obtained

Me

MeO

MeOR

OR

Rh2(R-DOSP)4

N2

COOMe

Me

MeO

MeOR

OR

MeOOC

Me

H

Davies's strategy : C-H activation/Cope rearrangement

Me

MeO

O

O

R1

R2

R3

Me

+[4+2]

O

O

Me

MeO

R2

R3

R1

H

Me

H

H

Kim and Rychnovsky's, Jacobsen's strategy : Diels Alder reaction : one center introduced prior to DA poor diastereoselectivity (improved by Jacobsen)

O

Me

H

Me

Me

H OOH

MetBuO

Harrowven's strategy : Starting from commercial monoterpene

40

C-H activation/Cope rearrangement

Davies, H.M.L.; Dai, X.; Long, M.S. J. Am. Chem. Soc. 2006, 128, 2485-2490.

Me

MeO

OR

OR

N2

COOMe

Me

MeO

MeOR

OR

MeOOC

Me

HRh2(R-DOSP)4 2 mol%2,2-DMB, RT, 1.5h

Me

OMe

Me OR

OR

+

Me

MeOOC

Me

HH

41

C-H activation/Cope rearrangement : Models

Davies, H.M.L.; Dai, X.; Long, M.S. J. Am. Chem. Soc. 2006, 128, 2485-2490.

42

Me

MeO

OR

OR

N2

COOMe

Me

MeO

MeOR

OR

MeOOC

Me

HRh2(R-DOSP)4 2 mol%2,2-DMB, RT, 1.5h

Me

OMe

Me OR

OR

+

Me

MeOOC

Me

HH

5 steps

Me

Me

MeOOC

Me

HMe

Me

Me

H

Me Me

erogorgiaene4 additional steps

Me

MeO

MeOR

OR

MeOOC

Me

H

Me

HO

MeO

OH

MeMeH

colombiasin A14 additional steps

Me

O

MeOH

OH

MeHMe

elisapterosin B13 additional steps

C-H activation/Cope rearrangement

Davies, H.M.L.; Dai, X.; Long, M.S. J. Am. Chem. Soc. 2006, 128, 2485-2490.

43

(-)-tetrodotoxin extracted from japanese fugu fish. Poison : very potent as a selective blocker of voltage-gated sodium ion channels.

Structure elucidated in 1964 by Woodward.First racemic total synthesis by Kishi in 1972 : about 30 steps

Second total synthesis in 2003 by Isobe : more than 60 steps 25 protecting group manipulations

A shorter version published in 2004.

Total synthesis by Du Bois : 32 steps 2 C-H functionalisations, 5 protecting group manipulations

OH

OO

OH

HO

OH

OH

HN NH+H2N

HO

(-)-tetrodotoxin

Total synthesis of (-)-tetrodotoxin

Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 11510-11511.

44

Total synthesis of (-)-tetrodotoxin

OO

OHHO

HO

HOH

isoascorbic acid E315

O

PivO O

OTBS

O

N2H

O

ORh2(HNCOCPh3)4 1.5 mol%

further used without purification

O

PivO O

OTBS

O

O

O

9 steps

Stereospecif ic Rh-carbene C-H insertion

Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 11510-11511.

45

Total synthesis of (-)-tetrodotoxin

14 steps

O

OO

O

O

Cl O

OH

O

NH2

Rh2(HNCOCF3)4 10 mol%

Stereospecif ic Rh-nitrene C-H insertion

O

OO

O

O

Cl O

O NH

O

PhI(OAc)2, MgO 77%

OH

OO

OH

HO

OH

OH

HN NH+H2N

HO

(-)-tetrodotoxin

7 steps

OO

OHHO

HO

HOH

isoascorbic acid E315

O

PivO O

OTBS

O

N2H

O

ORh2(HNCOCPh3)4 1.5 mol%

further used without purification

O

PivO O

OTBS

O

O

O

9 steps

Stereospecif ic Rh-carbene C-H insertion

Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 11510-11511.

46

Rh-nitrene insertion

R O

H

O

NH2

O O

N

R HRhLn

O O

NH

R

Rh source

PhI(OAc)2, MgO

Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 11510-11511.Espino, C.G.; Du Bois, J. Angew. Chem. Int. Ed. 2001, 40, 598-600.Godula, K.; Sames, D. Science, 2006, 312, 67-72.

Used for C-N bond formation at an alkyl site.Pioneered by Breslow, and further developed by Du Bois. Detailed mechanism still unclear.

No second substituent to give flexibility, compared to carbenes.

47

CONCLUSION

48

C-H functionalization : a powerful tool in total synthesis

• Rapidly evolving field : many groups working on the development of new methods/conditions/catalysts.

Work to be done : improve regioselectivity and selectivity, reactivity…

• Many total syntheses already published, and more are appearing in the literature every year.

• C-H functionalization :

mild conditions => compatible with complex structures

rapid generation of complexity => interesting for complex molecules

no prefunctionalization needed => shorter syntheses

complementary approach => different strategies

green chemistry => appreciated nowadays

Soon C-H bonds will be seen as ubiquituous functional groups

49

THANKS FOR YOUR ATTENTIONQuestions

top related