methane in sheep

Post on 02-Aug-2015

986 Views

Category:

Education

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Impact of genetic selection for f thperformance on methane

emissions from Merinosemissions from Merinos

David Cottle

March 2009Wellington NZWellington, NZ

1

Background

2

Background

3

Background

4

Background

5

Background

6

Background

Feed intake-methane

7

Background

8

BackgroundTotal gross turnover category(Total cash receipts + buildup in trading stocks)

< $100,000 $100,000-$200,000

$200,000-$400,000

$400,000 +

Sheep numbers at June 30th

Maiden ewesBreeding ewes

1,305139

2,776271

4,714507

2,027

8,764952

3,809Breeding ewesWethersLambsRams

Total DSE’s

55833625715

1,340

1,08671167434

2,850

2,0271,0161,094

704,839

3,8091,9512,120

1018,996

Total wool production (Kg greasy) 5,605 11,786 23,410 42,017Farm land area (Ha) 1,989 3,000 9,445 16,700Cropping area (Ha) 21 52 93 425Nitrogen fertiliser (Kg N) 966 2,392 4,278 19,550Greenhouse emissions (TCO2-e)

CH4 – entericN2O - N FertiliserN2O – indirectN2O - dung, urine

1781

1519

3713

3140

6356

5469

1,19829

111131Total farm emissions 19

21440

44669

764131

1,469

Models of 4 average sheep specialist farms using the Uni. Melbourne emission calculators, considering only direct emissions liable under Australian calculation methodologies

9

g y g( www.climatechange.gov.au/inventory/methodology/index.html).

Emissions that farms would be liable for if they become CPRS-covered, or are allocated a tax/fee that is equivalent to the cost of buying emission permits (likely) (Keogh and Cottle, in press)

Methods• The 10 trait selection index (desired gains) program

MTIndex was used to construct an index based on SGA Merino 14%MP without yFDCV and SS butSGA Merino 14%MP, without yFDCV and SS, but with methane (kg/year.ewe) and feed intake (kgDM/year.ewe) in the breeding objective

• Methane was given an EV based on Kg Methane X 21 /1000 X (permit price ($/CO2-e)).– The UNFCCC attributes Methane a 100 year GWP of 21– The UNFCCC attributes Methane a 100 year GWP of 21– Permit price was varied from zero to $500/tCO2-e

• Feed intake was given an EV of zero,-$0.02 or -$0.10/kg (Ponzoni 1988)

• These two traits were either used as selection criterion (i e assumed measurement possible) or not

10

criterion (i.e. assumed measurement possible) or not

Methods

11

Methods14% MP Index

-ve

12

Methods2.05 => SD index 10

NLW EV – lamb’s CH4 lamb’s CH4 = 0.6 * 7.3kg * Methane REV

-0.16 kg/ewe CH4/gen/i = 10% reduction in 10 years

13

Methods

$20-$70/tonne

Australian Treasury economic modelling:

CPRS-5 (a 5% emission reduction by 2020) CPRS-15 (a 15% reduction by 2020)CPRS 15 (a 15% reduction by 2020).

Price $/tCO2-e is somewhat misleadingly called the carbon price

EV kg methane = $/tCO2-e * 21 (GWP) /1000

14

Methods

20.5 µm flock

15

ResultsPositive methane – production correlationsPositive methane production correlations

Implicit price to achieve d i d idesired gain

Zero $/tCO2‐e is current situationCH would increase with 14% MP ifCH4 would increase with 14% MP if <$180/tCO2‐e

Wool ~ $36/ewe/yearWool $36/ewe/yearMethane ~ -$4/ewe/year

16

ResultsPositive rPositive r

Implicit price to achieve d i d idesired gain

Not worth selecting forNot worth selecting for methane

17

ResultsPositive rPositive r

18

Feed EV increased – similar resultsBoth (sire) – sire, half sib records available (stud)

ResultsNegative correlationsNegative correlations

Implicit price to achieve desired gaindesired gain

Zero $/tCO2‐e is current situationCH would decrease with 14% MPCH4 would decrease with 14% MP

19

ResultsNegative rNegative r

Implicit price to achieve desired gaindesired gain

Zero $/tCO2‐e is current situationCH would decrease with 14% MPCH4 would decrease with 14% MP

If correlations negativeIf correlations negative than it could be worth selecting for methane

20

ResultsNegative rNegative r

21

Sensitivity analyses (EV, rp, rg se’s)

Positive r

Negative r

22

Sensitivity

354045

Methane+ve

101520253035

Frequency

05

10

0.08 0.16 0.24 0.31 0.39 0.47 0.55 More

25

30

Methane response (per 10 years)

5

10

15

20

Frequency

-ve

230

5

-1.05 -0.84 -0.62 -0.40 -0.18 0.04 0.26 More

Conclusion

Can only assess whether it is worth measuring feed intake or methane to greduce methane when methane –production correlations are knownp– Positive r: very unlikely to be economic– Negative r: maybeNegative r: maybe

24

ReferencesALCOCK, D. & HEGARTY, R.S. (2006) Effects of pasture improvement on productivity, gross margin and methane emissions of a grazing sheep enterprise. Greenhouse Gases and Animal Agriculture: An Update. Proceedings of the 2nd International Conference on Greenhouse Gases and Animal Agriculture, Zurich, Switzerland Volume 1293, 103‐106AUSTRALIAN GOVERNMENT (2008) Carbon Pollution Reduction Scheme White Paper December http://www.climatechange.gov.au/whitepaper/summary/index.html(Accessed January 8 2009)BEEVER, D. E. (1993) Rumen function. In Quantitative Aspects of Ruminant Digestion and Metabolism (Eds J. M. Forbes & J. France), pp. 187–215. Wallingford:CAB International.BENCHAAR, C., POMAR, C. & CHIQUETTE, J. (2001) Evaluation of dietary strategies to reduce methane production in ruminants: a modelling approach. Canadian Journal ofAnimal Science 81, 563–574.BLAXTER, K.L. & CLAPPERTON, J. L. (1965) Prediction of the amount of methane produced by ruminants. British Journal of Nutrition 19, 511–522., , J ( ) p y J ,BLAXTER, K. L. & WAINMAN, F. V. (1964) The utilization of the energy of different rations by sheep and cattle for maintenance and for fattening. Journal of AgriculturalScience, Cambridge 63, 113–128.CORSON, D. C., WAGHORN, G. C., ULYATT, M. J. & LEE, J. (1999) Forage analysis and livestock feeding. Proceedings of the New Zealand Grassland Association 61, 127–132.CRUTZEN, P. J. (1995). The role of methane in atmospheric chemistry and climate. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction. Proceedings of theEighth International Symposium on Ruminant Physiology (Eds W. V. Engelhardt, S. Leonhard‐Marek, G. Breves & D. Giesecke), pp. 291–315. Stuttgart: Ferdinand EnkeVerlag.DEMEYER, D. I. & VAN NEVEL, C. J. (1975) Methanogenesis, an integrated part of carbohydrate fermentation, and its control. In Digestion and Metabolism in the Ruminant.Proceedings of the 4th International Symposium on Ruminant Physiology (Eds I. W. McDonald & A. C. I. Warner), pp. 366–382. University of New England, Armidale,g y p y gy ( ), pp y g , ,Australia: The University of New England Publishing Unit.GIBBS, M. J., LEWIS, L. & HOFFMAN, J. S. (1989) Reducing Methane Emissions from Livestock: Opportunities and Issues. Rep. EPA 400/1‐89/002. Washington, DC: U.S.Environmental Protection Agency.HEGARTY R. S., GOOPY J. P.. HERD R. M & MCCORKELL B. (2007) Cattle selected for lower residual feed intake have reduced daily methane production J. Anim Sci.  85,1479‐1486.HOUGHTON, J. (1997) Global Warming: The Complete Briefing, 2nd edition. Cambridge: Cambridge University Press.JOHNSON, D. E., HILL, T. M.,WARD, G. M., JOHNSON, K. A., BRANINE, M. E., CARMEAN, B.R. & LODMAN, D.W. (1993) Ruminants and other animals. In Atmospheric Methane: Sources, Sinks, and Role in Global Change (Ed. M. A. K. Khalil), pp. 219–229. Berlin: Springer‐Verlag.JOHNSON, D. E., WARD, G.M. & RAMSEY, J. J. (1996) Livestock methane: current emissions and mitigation potential. In Nutrient Management of Food Animals to Enhance and J J J ( ) g p gProtect the Environment (Ed. E. T. Kornegay), pp. 219–233. New York: CRC Press Inc.LASSEY, K. R., ULYATT, M. J., MARTIN, R. J., WALKER, C. F. & SHELTON, I. D. (1997) Methane emissions measured directly from grazing livestock in New Zealand. Atmospheric Environment 31, 2905–2914.LENG, R. A. (1993) Quantitative ruminant nutrition – a green science. Australian Journal of Agricultural Research 44, 363–380.MCALLISTER, T. A., OKINE, E. K., MATHISON, G.W. & CHENG, K.‐J. (1996) Dietary, environmental and microbiological aspects of methane production in ruminants. Canadian Journal of Animal Science 76, 231–243.MOSIER, A. R., DUXBURY, J. M., FRENEY, J. R., HEINEMEYER, O., MINAMI, K. & JOHNSON, D. E. (1998) Mitigating agricultural emissions of methane. Climatic Change 40, 39–80.OKINE, E. K., MATHISON, G.W. & HARDIN, R. T. (1989) Effects of changes in frequency of ( ) g q yPELCHEN, A. & PETERS, K.J. (1998) Methane emissions from sheep. Small Ruminant Research 27 (1998) 137‐150.PINARES‐PATINO, C. S., ULYATT, M. J., LASSEY, K. R., BARRY, T.N. & HOLMES, C. W. (2003) Persistence of differences between sheep in methane emission under generous grazing conditions. Journal of Agricultural Science 140, 227–233.ULYATT, M. J., BAKER, S. K., MCCRABB, G. J. & LASSEY, K. R. (1999) Accuracy of SF6 tracer technology and alternatives for field measurements. Australian Journal of Agricultural Research 50, 1329–1334.ULYATT, M. J., LASSEY, K. R., SHELTON, I.D. & WALKER, C. F. (2002) Seasonal variation in methane emission from dairy cows and breeding ewes grazing ryegrass/white clover pasture in New Zealand. New Zealand Journal of Agricultural Research 45.VAN NEVEL, C. J. & DEMEYER, D. I. (1996) Control of rumen methanogenesis. Environmental Monitoring and Assessment 42, 73–97.

25

Acknowledgements

Rob BanksKevin AtkinsKevin Atkins

Julius van der WerfG LGreg Lee

Mick KeoghRi h E k dRich Eckard

Roger HegartyPeter Amer

26Thanks

top related