microsystems: from nano to micro and macroaandreo1/487/487archive/2003/... · ieee cas tour 2002...

Post on 08-Jul-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

IEEE CAS Tour 2002 A.G. Andreou

Microsystems: From Nano to Micro and Macro

Andreas GroupJohns Hopkins University

IEEE CAS Tour 2002 A.G. Andreou

OUTLINE

Introduction: Emerging Information Technologies

Part I: Natural History of Nanotechnology

Part II: Engineering from Nano to Micro and Macro – Acetylcholine Receptor Biosensor– PVA Micro-polarizers and Polarization Camera– Ultra Thin Silicon CMOS Optoelectronics

Conclusions

IEEE CAS Tour 2002 A.G. Andreou

Introduction

Emerging Information Technologies

IEEE CAS Tour 2002 A.G. Andreou

CMOS• SOI• 3D• MRAM

Quantum ComputingDNA Computing

Quantum Cellular Automata

Self AssemblySoft Lithography

Single Quantum FluxElectron Interference

Spintronics

Carbon NanotubesMolecular Devices

Coulomb BlockadeInterband Tunneling

Resonance TunnelingGiant Magnetoresistance

Plastic ElectronicsPhotonic CrystalsEmerging

Information

Technologies

IEEE CAS Tour 2002 A.G. Andreou

What is a micro-meter

Human Hair

111000

m mmµ →

100µm

Human Cell

IEEE CAS Tour 2002 A.G. Andreou

What is a nano-meter

111000

nm mµ→

500 nm

Blue light

L

P-substrate(Bulk)

Gate

Gate Oxide

B

SourceDrainG

D

S

100 nm2 nm

IEEE CAS Tour 2002 A.G. Andreou

Part I

Natural History of Nanotechnology

IEEE CAS Tour 2002 A.G. Andreou

Periodic Table

IEEE CAS Tour 2002 A.G. Andreou

2001November 9 December 21

IEEE CAS Tour 2002 A.G. Andreou

Carbon Nanotube Circuits

Dekker group

Lieber group

IEEE CAS Tour 2002 A.G. Andreou

2000

Montemagno Group, Cornell, Science November 24

200 nm

80 nmNickel Post

Nanopropeller750 to 1400 nm

F1 ATPase

8 rps80% efficiency

IEEE CAS Tour 2002 A.G. Andreou 1tya1mya1bya

Nanotechnology Timeline 2000

1997

2001

IEEE CAS Tour 2002 A.G. Andreou

1 billion years ago

E-coli bacterium

• Unicellular organism• Sensors, • Memory• Actuators (flagella) nanoscale molecular motors

IEEE CAS Tour 2002 A.G. Andreou

Cell membrane and peptide structures

Lehninger , Bioenergetics, 1973

2.5 nm

3.5 nm

2.5 nm

IEEE CAS Tour 2002 A.G. Andreou

Flagellar Molecular Motor

Evolving Brains, J. Allman 1999

2: forward (run), reverse (tumble)

Gears30Number of parts8Cylinders

ATP and proton current 100% efficiency

Power source10 hp per poundPower per unit weight0.1 atto hpPower output100 rpsSpeed25 nmDiameter

IEEE CAS Tour 2002 A.G. Andreou

500 million years ago

Evolving Brains, J. Allman 1999

From cilia to receptors

Myelinated Cells (axons)

IEEE CAS Tour 2002 A.G. Andreou 1tya1mya1bya

Nanotechnology Timeline 2000

1997

2001

Cam

brian

IEEE CAS Tour 2002 A.G. Andreou

50 million years ago

IEEE CAS Tour 2002 A.G. Andreou 1tya1mya1bya

Nanotechnology Timeline 2000

19972001

Cam

brian

IEEE CAS Tour 2002 A.G. Andreou

Retina Architecture

5 µm

Kessel and Kardon

Rabbit retina

IEEE CAS Tour 2002 A.G. Andreou

Outer plexiform cells and synapses

Chemicalsynapses

Electrical synapses

100 nm

200 nm

IEEE CAS Tour 2002 A.G. Andreou

Part II

Engineering from nano to micro and macro

Acetylcholine receptor-based biosensor

M.E. Eldefrawi, S.M. Sherby, A.G. Andreou, N.A. Mansour, Z. Annau, N.A. Blum and J.J. Valdes, Analytical Letters, Vol. 21, No. 9,pp. 1665-1680, 1988.

IEEE CAS Tour 2002 A.G. Andreou

Micro: Interdigitated-Electrode Capacitor

C5 um

IEEE CAS Tour 2002 A.G. Andreou

Nano: Phospholipids and Ach Receptor

+ _ _+

85 nm

IEEE CAS Tour 2002 A.G. Andreou

Acetylcholine Molecule and Receptor

IEEE CAS Tour 2002 A.G. Andreou

Gating the Ach Channel

Na+

Na+Na+

Na+

Ach channel CLOSED

Na+

Na+

Na+Na+

Na+Ach

Ach channel OPEN

Ach

Ach

Ach

IEEE CAS Tour 2002 A.G. Andreou

Sensitivity

IEEE CAS Tour 2002 A.G. Andreou

Selectivity

IEEE CAS Tour 2002 A.G. Andreou

Part II

Engineering from nano to micro and macro• PVA Micropolarizers and Polarization Camera

Z. Kalayjian and A.G. Andreou, “Integrated imaging linear polarimeter," ISA Transactions, Vol. 38, pp. 203-209, 1999.

L.B. Wolff, T.A. Mancini, P.O. Pouliquen and A.G. Andreou, “Liquid crystal polarization camera,” IEEE Transactions on Robotics and Automation, Vol. 13, No. 2, pp. 195-203, April 1997.

L.B. Wolff and A.G. Andreou, “Polarization camera sensors,” Image and Vision Computing, Vol. 13, No. 6, pp. 497-510, August 1995.

IEEE CAS Tour 2002 A.G. Andreou

Polarization: The World that Humans Can’t See

IEEE CAS Tour 2002 A.G. Andreou

Macro: Polarization-contrast Imager

180x186 PixelPhototransistor Array

ScannerPC Circuit

+

I1

Ib

I2Vb

Vref Vref

IPC

Q1 Q2 Q3 Q4

M1

M2 M3

OTAOTA

||

||

TR TRPC

TR TR⊥

−=

+

IEEE CAS Tour 2002 A.G. Andreou

Micro: PVA filmNano: doped PVA molecules

IEEE CAS Tour 2002 A.G. Andreou

Photolithography and Bleaching PVA films

IEEE CAS Tour 2002 A.G. Andreou

Micro: PVA Micropolarizers

25µm

TR⊥||TR

IEEE CAS Tour 2002 A.G. Andreou

Polarization Images

TR⊥||TR ||

||

TR TRPC

TR TR⊥

−=

+

IEEE CAS Tour 2002 A.G. Andreou

Part II

Engineering from nano to micro and macro• Ultra Thin Silicon CMOS High speed Optoelectronics

A.G. Andreou, Z.K. Kalayjian, A. Apsel, P.O. Pouliquen, R.A. Athale, G. Simonis and R. Reedy, “Silicon on sapphire CMOS for optoelectronic microsystems,” IEEE Circuits and Systems Magazine, Vol. 1, No. 3, pp. 22-30, 3rd Quarter 2001.

A. Apsel and A.G. Andreou, “5mW, Gbit/s silicon on sapphire CMOS optical receiver,” IEE Electronics Letters, Vol. 37, No. 19, pp. 1186-1188, September 2001.

A. Apsel, Johns Hopkins University, Ph.D Dissertation, 2002.

A. Abshire, Johns Hopkins University, Ph.D. Dissertation, 2001.

IEEE CAS Tour 2002 A.G. Andreou

Silicon on Insulator (sapphire) CMOS

10000 nm

200 nm

FT ~ 20 GHz, Fmax ~ 96 GHz (intrinsic devices)!

IEEE CAS Tour 2002 A.G. Andreou

Silicon Lateral PIN photodiodes in CMOS

50 um

100 nm

Andreou et. al. NSF/OIDA Workshop 02

IEEE CAS Tour 2002 A.G. Andreou

Spectral Response

IEEE CAS Tour 2002 A.G. Andreou

Frequency Response

• 65 x 65 um • 784 nm light• Vb = 2.5 Volts

Theoretical BW ~ 5 GHz

IEEE CAS Tour 2002 A.G. Andreou

Gb/s receiver

• 3.3 Volts

•5 mW

• 45 x 70 micron – small is good!-

Channel 6

IEEE CAS Tour 2002 A.G. Andreou

CONCLUSIONS

IEEE CAS Tour 2002 A.G. Andreou

Biology–Conductors: 20 -100 Ohms - cm–Insulators: 8 nm thickness

Leakage conductance ~ 1 x 1012 Ohms per 10 µm2

–Capacitance: 1 x 10-12 Farad per 10 µm2

3D structuresVLSI (standard CMOS - 2000)–Conductors: 1 x 10-3 to 10 x 103 Ohms - cm

Aluminum, Copper, Poly-crystalline silicon–Insulators: 2 nm thickness

Leakage conductance ~ 1 x 1015 Ohms per 10 µm2

–Capacitance: 5 x 10-15 Farad per 10 µm2

2D structures, quasi 3D in DRAM processes

Biological data from: B. Hille, “Ionic channels in excitable membranes”

IEEE CAS Tour 2002 A.G. Andreou

3D and Wiring Complexity

CortexPower PC 601

IEEE CAS Tour 2002 A.G. Andreou

Our Goal

To strive towards system complexity and functionality at the macroscopic scale through integration of heterogenous materials and a diversity of structures that exploit emergent physical/chemical properties at a hierarchy from nano to micro and meso.

Nature a good model to follow!

IEEE CAS Tour 2002 A.G. Andreou

Challenges

Synthesis (design and structuring issues).Bridging the size scalesCost effectiveness.Merit criteria.Characterization and modeling

IEEE CAS Tour 2002 A.G. Andreou

Bibliography

P. Abshire and A.G. Andreou, “Capacity and energy cost of information in biological and silicon photoreceptors ," Proceedings of the IEEE, Vol. 89, No. 7, pp. 1052-1064, July 2001 (Invited Paper).

top related