mission pour les initiatives transverses et

Post on 23-Jun-2022

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

February 15th, 2021 christopher.lefevre@cea.fr

Mission pour les initiatives transverses et interdisciplinaires – MITI

JOURNÉES DE RESTITUTION DU DÉFI ADAPTATION DU VIVANT

SymbioAdapt

Symbioses magnétotactiques: une adaptation des eucaryotes microbiens aux environnements anoxiques

Christopher Lefevre

Bioscience and Biotechnology Institute of Aix-Marseille, CEA Cadarache

1

THE MICROBIOMIN GROUP

5 PIs (2 HDR), 3 technical and engineering support

3 post-doctoral associates6 doctoral students

Process whereby microorganisms sequester diverse chemical elements into relatively stable

solid phases called biominerals.

Microbial Bio-Mineralization

What is the biodiversity of biomineralizing microorganisms and that of their biominerals?

What is the evolution and adaptive history of biomineralization processes?

What are their roles in biogeochemical cycles and global change?

What are the chemical pathways and molecular mechanismsof biomineral formation?

FUNDAMENTAL RESEARCH QUESTIONS

TOWARD APPLIED RESEARCH

How can magnetotactic bacteria and magnetic materials be exploited in biotechnologies?

2

How to assess the biodiversity of magnetotactic microorganisms and that of their biominerals?

CEA researcherCaroline Monteil

CNRS researcherChristopher Lefevre

CEA engineerBéatrice Alonso

CEA PhDFrançois Mathon

Sorbonne University PhDCécile Bidaud

CNRS PhDRomain Bolzoni

CEA PhDCamille Mangin

3

• Several magnetosomes create a dipolar magnetic moment

• The cell is subjected to a torque and get parallel to the geomagnetic field

• Passive alignment/active motion

0.5 µm0.5 µm

Transmission electron microscopyTransmission electron microscopy

0.5 µm

Transmission electron microscopy

Monteil and Lefèvre (2019) Trends in Microbiology

FreshwaterFreshwater

Marine environmentsMarine environments

Freshwater

Marine environments

Where (Oxic anoxic boundaries) What (magnetotactic organisms)

How to assess the biodiversity of magnetotactic microorganisms and that of their biominerals?

4

Monteil and Lefèvre (2019) Trends in Microbiology

FreshwaterFreshwater

Marine environmentsMarine environments

Freshwater

Marine environments

Where (Oxic anoxix boundaries) What (magnetotactic organisms)

How to assess the biodiversity of magnetotactic microorganisms and that of their biominerals?

5

• Ubiquitous and yet, unknown impact on ecosystem dynamics

• Poorly known diversity and evolutionary histories

• Biological innovations with high technological value

0.5 µm0.5 µm

Transmission electron microscopyTransmission electron microscopy

0.5 µm

Transmission electron microscopy

Monteil and Lefèvre (2019) Trends in Microbiology

FreshwaterFreshwater

Marine environmentsMarine environments

Freshwater

Marine environments

Where (Oxic anoxic boundaries) Why (magnetotactic organisms)

How to assess the biodiversity of magnetotactic microorganisms and that of their biominerals?

6

• Sampling / Magnetic sorting

• Single-cell sorting using micromanipulation

• Transmission electron microscopy and ultramicrotomy

• Single-cell genomics / Taxonomy / Functional annotation

Constraints

Development of single cell characterization

• Organisms recalcitrant to cultivation, requires chemical gradients

How to assess the biodiversity of magnetotactic microorganisms and that of their biominerals?

7

Recent breakthrough: Symbiose magnetotactic

Transmission electron microscopy

Mutualistic symbiosis observed in marine anoxic sediments betweenexcavate protists (Symbiontida, Euglenozoa) and ectosymbioticDeltaproteobacteria biomineralizing ferrimagnetic nanoparticles.

Multi-layered mutualism based on collective magnetotactic motilitywith division of labour and interspecies hydrogen-transfer-basedsyntrophy.

The guided motility of the consortia along the geomagnetic field isallowed by the magnetic moment of the non-motile ectosymbioticbacteria combined with the protist motor activity, which is a uniqueexample of eukaryotic magnetoreception acquired by symbiosis.

Monteil et al (2019) Nature Microbiology

How to assess the biodiversity of magnetotactic microorganisms and that of their biominerals?

8

SymbioAdapt – Symbioses magnétotactiques: une adaptation des eucaryotes microbiens aux environnements anoxiques

CNRS Research director

K. Benzerara

SU Professor

N. Menguy

CNRS Research director

G. Perrière

9

Institut de minéralogie, de physique des matériaux et de cosmochimie

Bioscience and biotechnology institute of Aix-Marseille

Laboratoire de biométrie et biologie évolutive

INSB INP INEE

10

La diversité spécifique des holobiontes par des approches d’écologie microbiennes indépendantes dela culture alliant tri cellulaire par micromanipulation, barcoding et approches de phylogéniemoléculaire.

La physiologie des partenaires sera inférée par l’annotation fonctionnelle de génomes et la génomiquecomparative.

L’évolution de l’interaction sera inférée par génomique évolutive.

Ces approches sont combinées à des approches de chimie, physique des matériaux et minéralogie La structure cellulaire et leur composition chimique seront déterminées par des techniques d’imagerie

impliquant microscopie de haute résolution et spectrométrie des rayons X. Les caractéristiques abiotiques de l’environnement seront déterminées par des approches de

biophysique et géochimie.

SymbioAdaptHypothèse principale: la coopération des sens de chimiotaxie et magnétoréception est répandue chez les eucaryotesunicellulaires et a émergé plusieurs fois dans leur histoire évolutive pour optimiser le déplacement de ces organismesvers les sédiments anoxiques.

Objectifs: ce projet vise à caractériser la biodiversité des holobiontes magnétotactiques et leur environnement,déterminer la biologie cellulaire des partenaires et inférer l’histoire évolutive de leur interaction.

11

SymbioAdapt

Main results: 15 morphotypes under characterization

12

SymbioAdapt

Main results: 15 morphotypes under characterization

Magnetotactic holobionts: morphotype 4

Specificities of morphotype 4

Holobiont:- North seeking in the Northern Hemisphere always found

with MMPs- Length ⁓10 µm

13

Light microscope images

Magnetotactic holobionts: morphotype 4

Specificities of morphotype 4

Holobiont:- North seeking in the Northern Hemisphere always

found with MMPs- Length ⁓10 µm- 1 protist with up to 8 ectosymbionts

2 µm

14

SEM images

TEM images

Magnetotactic holobionts: morphotype 4

Specificities of morphotype 4

Holobiont:- North seeking in the Northern Hemisphere always

found with MMPs- Length ⁓10 µm- 1 protist with up to 8 ectosymbionts- Bacteria are localized in invaginations of the external

membrane of the protist

15

TEM images of thin-sections

1 µm

Magnetotactic holobionts: morphotype 4

Specificities of morphotype 4

Holobiont:- North seeking in the Northern Hemisphere always

found with MMPs- Length ⁓10 µm- 1 protist with up to 8 ectosymbionts- Bacteria are localized in invaginations of the external

membrane of the protist

Protist:- 2 flagella. One pulling, the other pushing- Biomineralize crystalline particles rich in phosphorus and

calcium

2 µmSTEM-Energy-dispersive X-ray spectroscopyelemental maps

16

Ca P

Fe S

Magnetotactic holobionts: morphotype 4

Specificities of morphotype 4

Holobiont:- North seeking in the Northern Hemisphere always found

with MMPs- Length ⁓10 µm- 1 protist with up to 8 ectosymbionts- Bacteria are localized in invaginations of the external

membrane of the protist

Protist:- 2 flagella. One pulling, the other pushing- Biomineralize crystalline particles rich in phosphorus and

calcium- Dinoflagellate

Ectosymbionts:- Rod-shaped bacteria that produce bullet-shaped

magnetite and/or greigite magnetosomes

St Rapahaël Carry

17

0.5 µm

500 nm

Magnetotactic holobionts: morphotype 4

Specificities of morphotype 4

Holobiont:- North seeking in the Northern Hemisphere always found

with MMPs- Length ⁓10 µm- 1 protist with up to 8 ectosymbionts- Bacteria are localized in invaginations of the external

membrane of the protist

Protist:- 2 flagella. One pulling, the other pushing- Biomineralize crystalline particles rich in phosphorus and

calcium- Dinoflagellate

Ectosymbionts:- Rod-shaped bacteria that produce bullet-shaped

magnetite and/or greigite magnetosomes- Belong to the Desulfobacteraceae, closely related to BW-1

TEM

Symbioticbacteria frommorphotype 4

1816S rRNA phylogenetic tree (draft)

Magnetotactic holobionts: morphotype 4

Specificities of morphotype 4

Holobiont:- North seeking in the Northern Hemisphere always found

with MMPs- Length ⁓10 µm- 1 protist with up to 8 ectosymbionts- Bacteria are localized in invaginations of the external

membrane of the protist

Protist:- 2 flagella. One pulling, the other pushing- Biomineralize crystalline particles rich in phosphorus and

calcium- Dinoflagellate

Ectosymbionts:- Rod-shaped bacteria that produce bullet-shaped

magnetite and/or greigite magnetosomes- Belong to the Desulfobacteraceae, closely related to BW-1

19

Transmission

DAPI

EUBp

Desulofacteraceaep

FISH using a flurorescent probe specific to the Desulfobacteraceae family

Magnetotactic holobionts: morphotype 4

Specificities of morphotype 4

Holobiont:- North seeking in the Northern Hemisphere always found

with MMPs- Length ⁓10 µm- 1 protist with up to 8 ectosymbionts- Bacteria are localized in invaginations of the external

membrane of the protistProtist:- 2 flagella. One pulling, the other pushing- Biomineralize crystalline particles rich in phosphorus and

calcium- Dinoflagellate

Ectosymbionts:- Rod-shaped bacteria that produce bullet-shaped

magnetite and/or greigite magnetosomes- Belong to the Desulfobacteraceae, closely related to BW-1- Genome sequenced

20

Genome 6,7 Mb

Completion 84,7%

21

SymbioAdapt: Objectives for 2021

*

*

* * *

* *

**

*

* *

**

*

* *

*

**

*

*

*

**

** *

***

**

**

*

* *

* *

*

*

*

*

**

*

*

*

*

22

- Convergent evolution at the origin of the magnetotactic holobionts diversity

- Diversity of magnetotactic symbioses shed light onto the evolutionary step of organellogenesis

- Symbiotic magnetosomes-forming bacteria optimized magnetic moment of their eukaryotic host

SymbioAdapt: Objectives for 2021

23

Thanks for your attention

top related