modul 6 antenna & related equipments

Post on 24-May-2015

1.156 Views

Category:

Education

5 Downloads

Preview:

Click to see full reader

DESCRIPTION

Describe about GSM physical hardware. Antennas, Module, etc.

TRANSCRIPT

GSM-GPRS Operation

Antenna And Equipment Related

Module 6

2

Outline

Base station antenna specification and meanings

Antenna types and trends

Antenna Type And Developments

Other Elements

kris.sujatmoko@gmail.com

3

BTS Logic Structure

BSC

Basebandsubsystem

Power supplysubsystem

RFsubsystem

Abisinterface

Uminterface

MSAntenna & feeder

subsystem

-48V/+24V

kris.sujatmoko@gmail.com

4

Antennas Categories

Omnidirectional antennas radiation patterns is constant in the

horizontal plain useful in flat rural areas

Directional antennas concentrate main energy into certain

direction larger communication range useful in cities, urban areas, sectorised

sites

kris.sujatmoko@gmail.com

5

RF Antenna and Feeder

Sect

or ¦A

Sect

or¦A

Sect

or¦A

Antenna

Feeder

Jumper

Jumper

BTS cabinet

Inner cable

TX/RXMA

NT

RXD

kris.sujatmoko@gmail.com

6

Antennas - Antenna Gain

Measures the antenna´s capability to transmit/extract energy to/from the propagation medium (air) dB over isotropic antenna (dBi) dB over dipole (dBd)

Antenna gain depends on mechanical size: A effective antenna aperture area: w frequency band

Antenna Gain:

G Aw4

2

Pt

Gain (Dbi)

Isotropic radiated Power

Equivalent isotropicradiated power:EIRP = Pt+Gain(Dbi)

radiatedpower

kris.sujatmoko@gmail.com

7

Technical Data

B lah

blahb la h bl ah

kris.sujatmoko@gmail.com

8

Antenna Properties

Electrical properties Operation Frequency Band Input impedance VSWR Polarization Gain Radiation Pattern Horizontal/Vertical beamwidth Downtilt Front/back ratio Sidelobe suppression and null filling Power capability 3rd order Intermodulation Insulation

Mechanical properties Size Weight Radome material Appearance and color Working temperature Storage termperature Windload Connector types Package Size Lightening

kris.sujatmoko@gmail.com

GSM-GPRS Operation

Antenna Electrical properties

10

Wavelength

1/2 Wavelength

1/4 Wavelength

1/4 Wavelength

1/2 Wavelength

Dipole

Dipoles

1800MHz 166mm

900MHz 333mm

kris.sujatmoko@gmail.com

11

1 dipole (received power) 1mWMultiple dipole matrix

Received power 4 mW

GAIN = 10log(4mW/1mW) = 6dBd

kris.sujatmoko@gmail.com

12

Gain = 10log(8mW/1mW) = 9dBi

“Sector antenna”Received power 8mW

“Omnidirectional array”Received power 1mW

(Overlook

Antenna

kris.sujatmoko@gmail.com

13

GSM 900 : 890-960MHz GSM 1800 : 1710-1880MHz GSM dual band : 890-960MHz

& 1710-1880MHz eg.824-960MHz 1710-1900MHz

CDMA2000 1x

Frequency Range

kris.sujatmoko@gmail.com

14

Impedance

50

Cable

50 ohms

Antenna 50 ohms

kris.sujatmoko@gmail.com

15

9.5 W80

ohms50 ohms

Forward: 10W

Backward: 0.5W

Return Loss 10log(10/0.5) = 13dB

VSWR (Voltage Standing Wave Ratio)

VSWR

kris.sujatmoko@gmail.com

16

1.5 =(VSWR-1)/(VSWR+1) RL=-20lg

kris.sujatmoko@gmail.com

17

Polarization

Vertical Horizontal

+ 45degree slant - 45degree slant

kris.sujatmoko@gmail.com

18

V/H (Vertical/Horizontal) Slant (+/- 45°)

kris.sujatmoko@gmail.com

19

Linear,vertical 45dual linear 45 slant

kris.sujatmoko@gmail.com

20

Dipole

Ideal radiating dot source(lossless radiator)

eg: 0dBd = 2.15dBi

dBd and dBi

2.15dB

kris.sujatmoko@gmail.com

21

Pattern

kris.sujatmoko@gmail.com

22

Beamwidth

120° (eg)Peak

Peak - 10dB

Peak - 10dB

10dB Beamwidth

60° (eg) Peak

Peak - 3dB

Peak - 3dB

3dB Beamwidth

kris.sujatmoko@gmail.com

23

3dB Beamwidth Horizontal

Directional Antenna 65°/90°/105°/120 °Omni 360°

kris.sujatmoko@gmail.com

24

Directional Omni-directional

3dB Beamwidth Vertical

kris.sujatmoko@gmail.com

25

Mechanical down tilt Fixed electronic down tilt Adjustable electronic down

tilt

Downtilt

kris.sujatmoko@gmail.com

26

Demonstration of Electronic Downtilt

kris.sujatmoko@gmail.com

27

Non down tilt Electronic downtilt Mechanical downtilt

kris.sujatmoko@gmail.com

28

Electronic and mechanical downtilt

kris.sujatmoko@gmail.com

29

Antenna Downtilit – Whats goal ?

kris.sujatmoko@gmail.com

30

Antenna Downtilt Consideration

kris.sujatmoko@gmail.com

31

Ratio of maximum mainlobe to maximum sidelobe

F/B = 10 log(FP/BP) typically 25dB

Back power Front power

Front to back ratio

kris.sujatmoko@gmail.com

32

Upper Side lobes Suppression & Null Fill

kris.sujatmoko@gmail.com

33

Sidelobes

(dB)

(dB)

kris.sujatmoko@gmail.com

34kris.sujatmoko@gmail.com

35

Continuous :25-1500 watts

peak :n2p

Permitted Power

kris.sujatmoko@gmail.com

36

IMD@243dBm f1, f2, 2f1-f2, 2f2-f1

913MHz,936MHz,959MHz,982MHz

Third Order Intermodulation

kris.sujatmoko@gmail.com

37

Intermodulation

Intermodulasi Terjadi akibat penguatan

sistem yang non linier Hanya orde ke-3 dan

kadang-kadang orde ke-5 yang signifikan

Sinyal dengan amplituda yang sama menghasilkan level IM yang sama pada frek tinggi dan rendah

Sinyal dengan amplituda berbeda memberikan level IM yang berbeda pula

Untuk mencegah intermodulasi,penguat dioperasikan pada penguatan bukan-maksimum

kris.sujatmoko@gmail.com

38

Intermodulation

Intermodulasi

Komp. Orde 1 : diharapkan linier

Komp. Orde 2 : frek 2 diredam oleh filter

Komp. Orde 3 : frek 3 diredam dengan filter

Penguat Non-linier

tB

tAv

B

Ai

cos

cos

3

2

i

iio

cv

bvavv

Yang bermasalah :

Komponen yang lain amplituda kecil

ABBA 2,2

kris.sujatmoko@gmail.com

39

1000mW ( 1W) 1mW

10log(1000mW/1mW) = 30dB

Isolation

kris.sujatmoko@gmail.com

40

10 Simple Guidelines for RF Safety

All personnel should have EME awareness training All personnel entering the site must be authorized Obey all posted signs Assume all antennas are active Before working on antennas, notify owners and disable appropriate

transmitters Maintain minimum 3 feet clearance from all antennas Do not step in front of antennas Use personal RF monitors while working near antennas Never operate transmitters without shields during normal operation Do not operate base station antennas inside equipment rooms

kris.sujatmoko@gmail.com

41

PVC, Fiberglass Anti-temperature, water-proof,

anti-aging, weather resistant

Radome Material

kris.sujatmoko@gmail.com

42

Good-looking, environment-protecting

Colour

kris.sujatmoko@gmail.com

43kris.sujatmoko@gmail.com

GSM-GPRS Operation

Antenna Types and Development

45

Antenna Types

By frequency band: GSM900, GSM1800, GSM900/1800

By polarization: Vertical, Horizontal, ±45º linear

polarization, circle polarization

By pattern: Omni-directional, directional

By down-tilt: Non, mechanical, electronic

adjustment, remote control

By function: Transmission, receiving, transceiving

kris.sujatmoko@gmail.com

46

Broad bandMultifunctionalHigh Integrity

Antenna Development Trend

kris.sujatmoko@gmail.com

47

def = Attenuation between TX & RX antenna connectors

Horizontal separation needs approx. 5 distance

for sufficient decoupling antenna patterns

superimposed if distance too close

Vertical separation distance of 1 provides

good decoupling values good for RX /TX decoupling

Minimum coupling loss

main lobe

5 .. 10

1

AntennasDecoupling

kris.sujatmoko@gmail.com

48

Installation Examples Recommended decoupling

TX - TX: ~20dB TX - RX: ~40dB

Horizontal decoupling distance depends on antenna gain horizontal rad. pattern

Omnidirectional antennas RX + TX with vertical separation (“Bajonett”) RX, RX div. , TX with vertical separation (“fork”)

Vertical decoupling is much more effective

0,2m

kris.sujatmoko@gmail.com

49

•Time diversity

•Frequency diversity

•Space diversity

•Polarisation diversity

•Multipath diversity

•interleaving

•frequency hopping

•multiple antennas

•crosspolar antennas

•equaliser•rake receiver

t

f

DiversityDiversity Technics

kris.sujatmoko@gmail.com

50

Diversity gain depends on environment

Is there coverage improvement by diversity ? antenna diversity

equivalent to 5dB more signal strength more path loss acceptable in link budget higher coverage range

R

R(div) ~ 1,3 RA 1,7 A ??70% more coverage per cell ??needs less cells in total ??

True only (in theory) if the environment is infinitely large

and flat

DiversityCoverage Improvement?

kris.sujatmoko@gmail.com

51

Network ElementsMHA

MastHead Amplifier(Low Noise Amplifier)

RX signal amplified near the antenna in the top of the mast

Offers better coverage Eliminates the antenna

cable loss Increased receiver

sensitivity of the BTS and cell size

Increased network quality

Noise Figure £ 2.0 dB (typical)RX Gain: Up to 12 dBDimensions : 266 x 130 x 123 mmWeight : 5.6 kg (duplexed)Volume : 4.2 lIP 65 Enclosure ProtectionPower Feeding Through Antenna CoaxAlarms handled in BTS

kris.sujatmoko@gmail.com

52

Booster

TX signal amplified

Nokia Booster Configuration

Booster (PA) Unit (TBU)

Booster Filtering Unit (AFH)

Masthead Preamplifier equipment (MHA)

Output power before combining can be up to 49 dBm

Isolator + combiner + filter (AFH) give roughly 2.5 dB losses

Booster BTS is suitable for all the environments where enhanced coverage or high output power is needed

Theoretically, cell radius is enhanced up to 60% and the coverage area is roughly the triple

Network Elements Booster

TRXTBUAFH

kris.sujatmoko@gmail.com

53

BTS Equipments layout

TOWER

BTSE

RECTIFIER

BATTERY

TRANSMISSION EQP.

SITE

GENSET

AC

Groundingsensor

ACPDB

Power PLN

SHELTER

kris.sujatmoko@gmail.com

GSM-GPRS Operation

End of Section 6

Antenna And Equipment Related

top related