molecular electronics: a new challenge for o(n) methods

Post on 04-Jan-2016

43 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

Molecular electronics: a new challenge for O(N) methods. Roi Baer and Daniel Neuhauser (UCLA) Institute of Chemistry and Lise Meitner Center for Quantum Chemistry The Hebrew University of Jerusalem, Israel. IPAM, April 2, 2002. Collaboration. Derek Walter , PhD. Student (UCLA) - PowerPoint PPT Presentation

TRANSCRIPT

1

Molecular electronics: a new challenge for O(N) methods

Roi Baer and Daniel Neuhauser (UCLA)

Institute of Chemistry and Lise Meitner Center for Quantum ChemistryThe Hebrew University of Jerusalem, Israel

IPAM, April 2, 2002

2

Collaboration

Derek Walter, PhD. Student (UCLA) Prof. Eran Rabani, Tel Aviv University Oded Hod, PhD. student (Tel Aviv U) Acknowledgments:

Israel Science Foundation Fritz Haber center for reaction dynamics

3

Overview

Molecular electronics is interesting Formalism O(N3) algorithm: non-interacting electrons Possible O(N) algorithm Electron correlation: O(N2) algorithm

4

Introduction

Why are coherent molecular wires interesting?

5

Conductance of C60

(a)

I

QDV

R1,C1

R2,C2

-1.0 -0.5 0.0 0.5 1.0

-0.8

-0.4

0.0

0.4

I (nA)

Tip Voltage (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(c)

(b)

(a)

dI/dV (a

.u.)

0.0

0.2

0.4

0.6

0.8

1.0

T = 4.2 K

T = 4.2 KdI/d

V (a.u.)

0.0 0.3 0.6 0.9 1.20.0

0.3

0.6

0.9

dI/dV

Tip Voltage (V)

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0T = 300 K

dI/dV (a

.u.)

Tip Voltage (V)

-1.0 -0.5 0.0 0.5 1.0

-0.8

-0.4

0.0

0.4

I (nA)

Tip Voltage (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(c)

(b)

(a)

dI/dV (a

.u.)

0.0

0.2

0.4

0.6

0.8

1.0

T = 4.2 K

T = 4.2 K

dI/dV (a

.u.)

0.0 0.3 0.6 0.9 1.20.0

0.3

0.6

0.9

dI/dV

Tip Voltage (V)

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0T = 300 K

dI/dV (a

.u.)Tip Voltage (V)

-1.0 -0.5 0.0 0.5 1.0

-0.8

-0.4

0.0

0.4

I (nA)

Tip Voltage (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(c)

(b)

(a)

dI/dV (a

.u.)

0.0

0.2

0.4

0.6

0.8

1.0

T = 4.2 K

T = 4.2 K

dI/dV (a

.u.)

0.0 0.3 0.6 0.9 1.20.0

0.3

0.6

0.9

dI/dV

Tip Voltage (V)

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0T = 300 K

dI/dV (a

.u.)

Tip Voltage (V)

Voltage [V]

dI/dV [a.u]

1.0

0.5

0.0

-1.0 0.0 1.0

T=4.2 K

STM

tip

Tunnel

Junction 1

Tunnel

Junction 2

(b)

D. Porath and O. Millo, J. Appl. Phys. 81, 2241 (1997).

6

Conductance of a nanotube

S. Frank and W. A. de Heer et al, Science 280, 1744 (1998).

7

Conductance of C6H4S2

Reed et al,

Science 278,252 (1997)

Chen et al,

Science 286,1550 (1998)

8

Coherent electronics

Size: ~ 1013 logic gates/cm2 (108) Response times: 10-15 sec (10-9)

Quantum effects: Interference Uncertainty Entanglement Inclonability

9

Interference effects

de-Broglie: electrons are waves Interference Nonlocal particle nature

Electrons are not photons! Fermions: cannot scatter into “any

energetically open state” Correlated: inelastic collisions, Coulomb

blockade… Tunneling: reducing/killing interference

effects, sensitive

10

A simple wire

W: Huckel parameters S D M: chain of 20 “gold” atoms, G G MW coupling = b Expect: current should grow with b

Units: eV

30 Carbons long

ML MR

V

bb

11

Sometimes more is less

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

b=1b=1.5b=2b=2.5b=3

I (e

2 /h V

olt)

V (Volt)

Inversion

12

Current from transmittance

R LI I I

Landauer current formula

R LI n E T E dE

30 Carbons long

ML MR

V

2eV 2eV

1

1 LL E

n Ee

13

Just because of the coupling…

0

0.2

0.4

0.6

0.8

1

-9 -8 -7 -6 -5 -4

b=1b=2

T(E

)

E (eV)

14

A switch based on interference

Simplest model of interference effects

2 4

6 8

10

15

Current-Voltage

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.5 1 1.5 2

0246810

V (Volt)

I (e

2 /h V

olt)

Destructive

Constructive

2 4

6 8

10

16

Fermi Wave length

=L

a=CC

Band bottom

Totally bonding

=2a Band top:

Totally non bonding

F=4a Band middle

Half filling

17

XOR gate based on interference

V1

V2

Current I

V1V2I

000

110

011

101

18

SensitivityDFT electronic structure. Molecule connected to gold wire, acting as a lead

Cu

rre

nt (

nA

)

Bias (Volt)

19

Quantum conductance formalism

( )ˆ1 ˆlimTr H N

R RtI Z e e I tb bm- - ×

®¥

é ù= ê úë û

rr

ˆ ˆ ˆ ˆ,l e l e l

iI qN q H Né ù= - = - ê úë û

&h

L R

IR

Wire

hR=1hR=0

( )ˆ ˆiH t iHt

R RI t e I e-

=h h ˆ

Tr H NZ e eb bm- ×é ù= ê úë û

rr

R. Baer and D. Neuhauser, submitted (2002).

20

Weak Bias: Linear Response

( ) ( ) ( )ˆ1 ˆˆlimTrlH N

lR e l RtG qZ e I I t

b mm m b¢ - -é ù -=ë û

®¥

é ù= ê úë û

Conductivity is a current-current correlation formula

R. Kubo, J Phys. Soc. Japan 12, 570 (1957).

21

Non-interacting Electrons

( ) ( )2 e

R l lRl R

qI F E N E dE

h ¹

= å ò

( )( )

1

1 llF

eb e me

-=

+

NlR(E) = cumulative transmission probability (from l to R)

R. Landauer, IBM J. Res. Dev. 1, 223 (1957).

22

Calculating conductance

Non-interacting particle formalism 4 step O(N3) algorithm

23

Step #1: Structure under bias

Use SCF model like DFT/HF etc. Optimize structure and e-density

ss

+

+

+

+

+

+

+

-

-

-

-

-

-

-

Right slabLeft slab

24

Step #2: Add Absorbing boundaries

effL RH H i

D. Neuhauser and M. Baer, J. Chem. Phys 90, 4351 (1989)

ss

+

+

+

+

+

+

+

-

-

-

-

-

-

-

Left slab Right slab

LG RG

25

Step #3: Trace Formula

( ) ( ) ( )†4 L RN E Tr G E G Eé ù= G Gë û

( ) ( ) 1G E E H -= -

T. Seideman and W. H. Miller, J. Chem. Phys. 96, 4412 (1992).

26

Step #4: Current formula

L R LRI F E F E N E dE

1

1 llF

e

l leVm m= +

(Landauer formula)

0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1 1.5

DF

0

0+eV/2

0-eV/2

27

Efficient O(N3) Implementation

*

16Re L Rn

nm mnnm n m

e BI W W

h ff=

( ) ( )L Rn

n

F E F EB dE

E f-

=-ò

N(E) is spiky Integrate energy analytically

†L LW U U= G

n n nHU Uf=

28

O(N) Algorithm

N(E) is averaged over E → A sparse part of G needed

The trace can be computed by a Chebyshev series

All energies computed in single sweep: integration is trivial

( ) ( ) ( )†

4 L RN E Tr G E G E

Tr T T

é ù= G Gë ûé ù= ë û ( )2 L RT G E= G G

R. Baer, Y. Zeiri, and R. Kosloff, Phys. Rev. B 54 (8), R5287 (1996).

0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1 1.5

DF

0

0+eV/2

0-eV/2

29

Including electron correlation

Time Dependent Density Functional Theory

30

Linear response

, ,t

I t L G t t E t dt

r r

, ,I LG E r r

Uniform, weak, time dependent electric field:

----

++++

2

220

t

E t E e

31

Building the model

Small jellium sandwich

Large jellium sandwich

Embed small in large

Frozen Jellium (leads)

Dynamic system (w+contacts)

ImaginaryImaginary

potentialpotential

ImaginaryImaginary

potentialpotential

32

The setup for C3

a) Dynamic density

b) Frozen density

c) Total Density

d) Kohn-Sham potential

33

Conductance of C3

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.25 0.5 0.75 1

z2 = -8 a

0

z2 = -4 a

0

z2 = 0 a

0

z2 = 4 a

0

z2 = 8 a

0

G(z

2,z0;

) [g

o]

[au]

34

Are correlations important?

Conductance is smaller by a factor 10. Possible reason: the same reason that

causes DFT to underestimate HOMO-LUMO gaps

35

Summary

Molecular electronics Theory of conductance Linear scaling calculation of conductance Importance of electrson-electron correlations TDDFT is expensive and at least O(N2)

top related