mpri - bio-informatique formelle - lc part 1 : theory

Post on 04-Apr-2015

109 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

MPRI - Bio-informatique formelle - LC

Part 1 : Theory

MPRI - Bio-informatique formelle - LC

Standard laws of biochemical kinetics applied to molecular

networks

MPRI - Bio-informatique formelle - LC

Xi Xaka

Rate of Mass Action: forward reaction

Biocham model:

present(Xi).absent(Xa).

ka*[Xi] for Xi=>Xa.

parameter(ka,0.2).

MPRI - Bio-informatique formelle - LC

0 0.2 0.4 0.6 0.8 1-0.1

0

0.1

0.2

Xa

d[Xa]0

dt

d[Xa]0

dt

Xi Xaka

a

a

d[Xa]k [Xi]

dt k (Xtot [Xa])

d[Xa]0, Xa* Xtot 1

dtsince Xtot Xi Xa 1

Steady State solution

Rate of Mass Action: forward reaction

d[Xa]

dt

MPRI - Bio-informatique formelle - LC

Xi Xaka

ki

Rate of Mass Action: reversible reaction

Biocham model:

present(Xi).absent(Xa).

ka*[Xi] for Xi=>Xa.ki*[Xa] for Xa=>Xi.

parameter(ka,0.2).parameter(ki,0.1).

MPRI - Bio-informatique formelle - LC

Xa0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

0.2

d[Xa]0

dt

d[Xa]0

dt

Xa*

d[Xa]0

dt

a

a i

d[Xa] k Xtot0, Xa* 0.67

dt k ksince Xtot=Xi+Xa=1

a i

a a i

d[Xa]k [Xi] k [Xa]

dt k Xtot (k +k ) [Xa]

Steady State solution

Xi Xaka

ki

Rate of Mass Action: reversible reaction

d[Xa]

dt

MPRI - Bio-informatique formelle - LC

production+

elimination-

a id[Xa]

k [Xi] k [Xa]dt

Xa0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

0.2

d[Xa]0

dt

d[Xa]0

dt

Xa*

d[Xa]0

dt

0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

Xa

d[Xa]0

dt

d[Xa]0

dt

Xa*

d[Xa]0

dt

Rate of Mass Action: reversible reaction

rated[Xa]

dt

MPRI - Bio-informatique formelle - LC

0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

1

2

34

5

B

Xa12345

Rate of Mass Action: catalyzed reversible reaction

Xi Xaka

ki

production+

elimination-

a id[Xa]

k [Xi] k [B] [Xa]dt

rate

MPRI - Bio-informatique formelle - LC

0 2.5 50

0.5

1

Xa*

B1 2 3 4

d[Xa]0

dt

d[Xa]0

dt

d[Xa]0

dt

Nullcline

0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

1

2

34

5

B

Xa12345

Xi Xaka

ki production+

elimination-

a id[Xa]

k [Xi] k [B] [Xa]dt

rate

MPRI - Bio-informatique formelle - LC

Xi Xaka

Michaelis-Menten: forward reaction

Biocham model:

present(Xi).absent(Xa).

ka*[Xi]/(Ja+[Xi]) for Xi=>Xa.

parameter(ka,0.2).parameter(Ja,0.05).

MPRI - Bio-informatique formelle - LC

0 0.2 0.4 0.6 0.8 1-0.1

0

0.1

0.2

Xi Xa

a a

a a

d[Xa] k [Xi] k (Xtot-[Xa])

dt J [Xi] J Xtot-[Xa]

where Xtot=Xi+Xa=1

ka

d[Xa]0, Xa* Xtot

dt

Steady State solution

Xa

d[Xa]0

dt

d[Xa]0

dt

Michaelis-Menten: forward reaction

d[Xa]

dt

MPRI - Bio-informatique formelle - LC

Xi Xaka

Michaelis-Menten: reverse reaction

Biocham model:

present(Xi).absent(Xa).

ka*[Xi]/(Ja+[Xi]) for Xi=>Xa.ki*[Xa]/(Ji+[Xa]) for Xa=>Xi.

parameter(ka,0.2).parameter(ki,0.1).parameter(Ja,0.05).parameter(Ji,0.05).

ki

Goldbeter-Koshland switch

MPRI - Bio-informatique formelle - LC

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

Xa*

a i

a i

d[Xa] k (Xtot Xa) k [Xa]

dt J Xtot-Xa J [Xa]

production+

elimination-

d[Xa]0

dt

d[Xa]0

dt

d[Xa]0

dt

Michaelis-Menten: reversible reaction

rate

Xi Xaka

ki

MPRI - Bio-informatique formelle - LC

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

1

2

3

4

5

0.1

Xa*

rate

Michaelis-Menten: catalyzed reversible reaction

B

Xi Xaka

ki

a i

a i

d[Xa] k (Xtot Xa) k [B] [Xa]

dt J Xtot-Xa J [Xa]

production+

elimination-

MPRI - Bio-informatique formelle - LC

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

1

2

3

4

5

.1

Xa*

rate

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

Xa*

[B]

d[Xa]0

dt

d[Xa]0

dt

d[Xa]0

dt

Nullcline

B

Xi Xaka

ki

a i

a i

d[Xa] k (Xtot Xa) k [B] [Xa]

dt J Xtot-Xa J [Xa]

production+

elimination-

MPRI - Bio-informatique formelle - LC

0

CycB*

APC

0

0.2

0.4

0.6

0.8

1

APC*

CycB

d[APC]0

dt

d[CycB]0

dt

' "syn deg deg

a i

[CycB]( [APC]) [CycB]

[APC] ( 20) (1 [APC]) ( 2) [CycB] [APC]1 [APC] [APC]

20 concentration of proteins that activates APC at Finish

concentration of proteins

dk k k

dtd B Cdc A Clndt J J

Cdc

Cln2

that inactivates APC at Start

CycB

APC

APC

Assume Cdc28 always present and in excess

Cln2Cdc20

Positive feedback

0.5

MPRI - Bio-informatique formelle - LC

0

0.2

0.4

0.6

0.8

1

CycB

Saddle Node bifurcationChange of parameter R (function of Cln2 and Cdc20)

APC

0

0.2

0.4

0.6

0.8

1

CycB0

0.2

0.4

0.6

0.8

1APCAPC

CycB

Saddle Node bifurcation point

Saddle Node bifurcation point

X Y

MPRI - Bio-informatique formelle - LC

X Y

CANNOT OSCIL

LATE

Negative feedback

MPRI - Bio-informatique formelle - LC

Y

X

ZYtot-Y Y

kci

kca

Xtot-X X

kai

kaa

Ztot-Z Z

kba

kbi

aa ai

ba bi

ca ci

d[X]k (Xtot [X]) k [X] [Y]

dtd[Y] k (Ytot [Y]) k [Y] [Z]

dt J Ytot [Y] J [Y]

d[Z]k (Ztot [Z]) k [Z] [X]

dt

Negative feedback

MPRI - Bio-informatique formelle - LC

X

Y

Z

Y

X

Z

The third element introduces a delay that allows the system to oscillate.

Negative feedback can create an oscillatory regime

MPRI - Bio-informatique formelle - LC

The importance of choosing the right parameters

Choose different values for the parameter kaa (activation of X)

• if kaa=0.015

• if kaa=0.1

• if kaa=0.2

Z

X

Y

XY

Z

MPRI - Bio-informatique formelle - LC

kaa : activation of X

Act

ivity

of

X

region of oscillations stable steady state

Hopf bifurcation points

HB HB

1. Choose a parameter: kaa

2. Vary its value. different solutions can be observedaccording to its value

3. The system oscillates between kaa=0.022 and kaa=0.114

4. At the point of bifurcation HB, the stable steady state changed into an unstable steady state and oscillationswere created.

5. The points surrounding the unstablesteady states show the amplitude of theoscillations.

Hopf bifurcationChange of parameter kaa (activation of X)

MPRI - Bio-informatique formelle - LC

Introduction to bifurcation theory

1. Saddle Node (SN) bifurcation2. Hopf (H) bifurcation3. SNIC bifurcation : when SN meets H4. Numerical Bifurcation theory5. Signature of bifurcations

MPRI - Bio-informatique formelle - LC

Bifurcation : Qualitative change in dynamics of the solutions of a system

Bifurcation point : Border line between two behaviours of solutions

Basic Definitions

MPRI - Bio-informatique formelle - LC

1. Saddle Node bifurcation

2 at equilibrium x=d[x]

([x]) [x] dt

rf r

r < 0, 2 solutionsone stable, one unstable

r = 0, 1 solutionsemi-stable

r > 0, 0 solution

x’

x x x

Bifurcation diagram

x’ x’

x

r

=> Vary the parameter, r

MPRI - Bio-informatique formelle - LC

2. Hopf bifurcation

dx dy(x,y) , (x,y)

dt dtf g

center

x

y

Bifurcation diagram x

p

g(x,y)=0

f(x,y)=0

stable focus (solutions converge to the steady state in a spiral)

x

y

g(x,y)=0

f(x,y)=0

unstable focus (solutions diverge from the steady state) + stable limit cycle (solutions convergeto the cycle)

x

y

g(x,y)=0

f(x,y)=0

Let p be a parameter of g(x,y) => vary p.

Supercritical Hopf bifurcation

MPRI - Bio-informatique formelle - LC

3. Saddle Node on Invariant Circles (SNIC)or when a saddle node meets oscillations

Combine cases 1 (Saddle Node) and 2 (Hopf)

parameter p

Positive feedback Negative feedback

When decreasing p, oscillations die at a saddle node bifurcationWhen increasing p, oscillations are created from a saddle node bifurcation

MPRI - Bio-informatique formelle - LC

4. Numerical bifurcation theory

How to solve numerically a system of n ODEs : the case of n=2

1 2 1 2where and fx =f(x) x=(x , x ) =(f , f )

1. Consider the following system of ODEs:

2. Solve at the equilibrium and determine the fixed points:

x =f(x)=0

*x

3. Determine the stability of the fixed points by computing the Jacobian A at thesevalues (Jacobian is the matrix of the partial derivatives of the functionswith respect to the components computed at the fixed points)

1 2f=(f , f )

1 2x=(x , x )

* *1 2 1 2

1 1

1 2

2 2

1 2 (x ,x ) (x ,x )

f f

x xA

f f

x x

MPRI - Bio-informatique formelle - LC

5. The eigenvalues can inform on the stability of the fixed points

4. Compute the characteristic equation in terms of the eigenvalues λ and where theequation is determined as follows:

2 4= where =trace of A and =determinant of A

2

* *1 2 1 2

1 1

1 2

2 2

1 2 (x ,x ) (x ,x )

f f

x xA- I 0

f f

x x

The solution of the equation is the following:

MPRI - Bio-informatique formelle - LC

2 4=

2where A is the jacobian

=trace of A => tr(A)

=determinant of A => A

MPRI - Bio-informatique formelle - LC

1

1,2 1,2

1 2

Let A be the jacobian

0, => saddle node bifurcation

and Re( ) 0 => Hopf bifurcation

For higher dimension bifurcations :

0 and 0

i

1 1,2

=> CUSP

0, and Re( ) 0 => Takens-Bogdanov

...

5. Signature of bifurcations

MPRI - Bio-informatique formelle - LC

Continuation of a saddle node in one-parameter –

One parameter bifurcation graph

1 1 2

2 1 2 1 2 1 2

f (x ,x ;p) 0

f (x ,x ;p) 0 where f , f , x , x and p are scalars

and where A 0 (det(A) 0)

Example of a system of 2 ODEs

2 equations, 3 unknowns.

Fix p=p* and solve for the steady state (x1, x2).

We seek an equation of x (either 1 or 2) in terms of p. That way, we can followa steady state as a parameter changes.

MPRI - Bio-informatique formelle - LC

For the case of the saddle node bifurcation, the following graph is obtained :

p

x1

*1 1 11 1

1 2 *2 2

2 2 2 *

1 2

1 1 1* *

1 2 *1 1 1 1* *

2 2 22 2 2 2

1 2

f f fx x 0

x x px x 0

f f fp p 0

x x p

or also

f f fx x px x x x

(p p ) or f f fx x x xx x p

*

1

* -1ss

2

1* * nss

f

p(p p ) A

f

p

and generalized to any n as long as A 0 :

f(x x ) (p p ) A

p

p1

MPRI - Bio-informatique formelle - LC

Part 2 : application to biology

MPRI - Bio-informatique formelle - LC

Quelques faits- 13 cycles rapides et synchronisés juste après fécondation

- Alternance entre les phases S et M (sans G1 ni G2)

- 6000 noyaux partagent le même cytoplasme

- Le niveau total des cyclines n’oscille qu’après le cycle 8 ou 9

- En interphase du cycle 14, arrêt en G2Quelques questions

- Pourquoi ne voit-on pas le niveau des cyclines osciller plus tôtpuisqu’il y a division nucléaire ?

- Pourquoi les cycles s’arrêtent-ils au 14e cycle ?

MPRI - Bio-informatique formelle - LC

Données expérimentales et simulation

CycBT

Stg/Cdc25

MPFb

Edgar et al. (1994) Genes and Development

MPRI - Bio-informatique formelle - LC

Pourquoi ne voit-on pas le niveau des cyclines osciller plus tôt puisqu’il y a

division nucléaire ?

MPRI - Bio-informatique formelle - LC

Un modèle simple du Xenope

 

CycB/Cdk1 = MPFCycB/Cdk1-P = preMPF

Wee1

Cdc25P

Fzy/APC

IEP

Cdk1

CycBP

Fzy/APC

IE

Cdc25

Wee1P

Cdk1

CycB

MPF

Wee1

Cdc25P

IEP

Fzy

P P

MPRI - Bio-informatique formelle - LC

D’un modèle de Xenopus …

' "s,mpf d,cb d,cb

' " ' "wee wee stg stg

' "s,mpf d,cb d,cb

[MPF] ( [FZY]) [MPF]

t

( [Wee1]) [MPF]+( [Stg]) [preMPF]

[preMPF]( [FZY]) [preMPF]

t

+(

dk k k

d

k k k k

dk k k

d

k

' " ' "wee wee stg stg

a,ie i,ie

a,ie i,ie

a,fzy i,fzy

a,fzy i,fzy

a,

[Wee1]) [MPF] ( [Stg]) [preMPF]

[MPF] (1 [IE]) [IE][IE]

t 1 [IE] [IE]

[IE] (1 [FZY]) [FZY][FZY]

t 1 [FZY] [FZY]

([Stg]

t

k k k

k kd

d J J

k kd

d J J

kd

d

' "

stg a,stg i,stg

a,stg i,stg

' "a,wee i,wee i,wee

a,wee i,stg

[MPF]) ([StgT] [Stg]) [Stg]

[StgT] [Stg] [Stg]

[Wee1] ( [MPF]) ([Wee1T] [Wee1])[Wee1]

t [Wee1] [Wee1T] [Wee1]

k k

J J

k k kd

d J J

Wee1

Cdk1/CycB

FZY

Cdc25

 

CycB/Cdk1 = MPFCycB/Cdk1-P = preMPF

Wee1

Cdc25P

Fzy/APC

IEP

Cdk1

CycBP

Fzy/APCIE

Cdc25

Wee1P

Cdk1

CycB

MPRI - Bio-informatique formelle - LC

… à un modèle de Drosophila

CycB/Cdk1 = MPFCycB/Cdk1-P = preMPF

Wee1

Cdc25P

Fzy/APC

IEP

Cdk1

CycBP

Fzy/APCIE

Cdc25

Wee1P

Cdk1

CycBLe noyau

CycB/Cdk1 = MPFCycB/Cdk1-P = preMPF

Wee1

Cdc25PCdk1

CycBP

Cdc25

Wee1P

Cdk1

CycBLe cytoplasme

MPRI - Bio-informatique formelle - LC1

Des compartiments différents

Cdk1/CycBFZY

234

MPRI - Bio-informatique formelle - LC

Des compartiments différents

Wee1c

Stgc

CycB/Cdk1 = MPFCycB/Cdk1-P = preMPF

Wee1n

StgnCdk1

CycBn

IEP

Fzy

Cytoplasm

Nucleus

Cdk1

CycBn

P

Cdk1

CycBc

Cdk1

CycBn

P

Fzy

Wee1n

MPFn

Stgn/Cdc25

Stgc/Cdc25

MPFc

Wee1c

CycBT

Cytoplasm

Nucleus

MPRI - Bio-informatique formelle - LC

Pourquoi les cycles s’arrêtent-ils au 14e cycle ?

MPRI - Bio-informatique formelle - LC

String/Cdc25, facteur limitant (1)

Son ARN : -Stable pendant 13 cycles-Dégradation abrupte

Le niveau total de laprotéine :- est faible au début- augmente pendant les 8 premiers cycles- est dégradé graduellement jusqu’au 14eme cycle

Son degré dePhosphorylation :oscille a partir du 5eme cycle

MPRI - Bio-informatique formelle - LC

String/Cdc25, facteur limitant (2)

Traitement alpha-amanitin : 14 cycles

MPFT

MPFb

Xm

Stgm

Xp

Treatment at t=55 min Treatment at t=70 min

MPRI - Bio-informatique formelle - LC

Diagramme de bifurcation: MPFn et CycBT en fonction du nombre de cycles

0 2 4 6 8 10 12 14 16 18

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14 16 18

0.0

0.2

0.4

0.6

0.8

1.0

StgT=1 StgT=0

Cycles

MPFn

CycBT

MPRI - Bio-informatique formelle - LC

Ce que la théorie de la bifurcation nous permet de conclure :

=> String est responsable de l’endroit où se trouve le saddle node (feedback positif) Si on réduit la valeur de String, le saddle node va bouger.

=> Si on élimine le feedback négatif, on perd les oscillations (dans le cytoplasme, il n’y a pas de feedback negatif).

top related