neutron sources · 2020. 6. 5. · summary • neutron facilities – history, overview &...

Post on 05-Oct-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Neutron Sources

Ken Andersen

Oxford School on Neutron Scattering3rd September 2019

Summary

• Neutron facilities– history, overview & trends

• Reactor-based sources– Institut Laue-Langevin

• Short-pulse spallation sources– ISIS

• Components of a spallation neutron source– accelerator– target– moderators

• Neutron source time structure– the time of flight method

• Long-pulse neutron sources

2

James Chadwick: used Polonium as alpha emitter on Beryllium

The first neutron source

Berkeley 37-inch cyclotron

350 mCiRa-Be source

Chadwick

1930 1970 1980 1990 2000 2010 2020

105

1010

1015

1020

11940 1950 1960

Ther

mal

flux

n/c

m2 -

s

(Updated from Neutron Scattering, K. Sköld and D. L. Price, eds., Academic Press, 1986)

Evolution of neutron sources

Nuclear Fission

Berkeley 37-inch cyclotron

350 mCiRa-Be source

Chadwick

1930 1970 1980 1990 2000 2010 2020

105

1010

1015

1020

1

ILL

X-10

CP-2

Reactor Sources

HFBR

HFIRNRUMTRNRX

CP-1

1940 1950 1960

Ther

mal

flux

n/c

m2 -

s

(Updated from Neutron Scattering, K. Sköld and D. L. Price, eds., Academic Press, 1986)

Evolution of neutron sources

Berkeley 37-inch cyclotron

350 mCiRa-Be source

Chadwick

1930 1970 1980 1990 2000 2010 2020

105

1010

1015

1020

1

ILL

X-10

CP-2

Reactor Sources

HFBR

HFIRNRUMTRNRX

CP-1

1940 1950 1960

Ther

mal

flux

n/c

m2 -

s

(Updated from Neutron Scattering, K. Sköld and D. L. Price, eds., Academic Press, 1986)

Evolution of neutron sources

FRM-II

Nuclear Spallation

Berkeley 37-inch cyclotron

350 mCiRa-Be source

Chadwick

1930 1970 1980 1990 2000 2010 2020

105

1010

1015

1020

1

ISIS

Pulsed Sources

ZING-P

ZING-P/

KENSWNRIPNS

ILL

X-10

CP-2

Steady State Sources

HFBR

HFIRNRUMTRNRX

CP-1

1940 1950 1960

Ther

mal

flux

n/c

m2 -

s

(Updated from Neutron Scattering, K. Sköld and D. L. Price, eds., Academic Press, 1986)

FRM-IISINQ

SNS

Evolution of neutron sources

J-PARC

Berkeley 37-inch cyclotron

350 mCiRa-Be source

Chadwick

1930 1970 1980 1990 2000 2010 2020

105

1010

1015

1020

1

ISIS

Pulsed Sources

ZING-P

ZING-P/

KENSWNRIPNS

ILL

X-10

CP-2

Steady State Sources

HFBR

HFIRNRUMTRNRX

CP-1

1940 1950 1960

Ther

mal

flux

n/c

m2 -

s

(Updated from Neutron Scattering, K. Sköld and D. L. Price, eds., Academic Press, 1986)

FRM-IISINQ

SNS

Evolution of neutron sources

J-PARC

ESS

light neutronsλ < μm < nmE > eV > meV

penetration ~ μm ~ cmθc 90° 1°

B 1018 p/cm2/ster/s(60W lightbulb)

1014 n/cm2/ster/s(60MW reactor)

spin 1 ½interaction electromagnetic strong force,

magneticcharge 0 0

Slow Neutrons vs Light

Why neutrons?

• Thermal neutron have wavelengths similar to inter-atomic distances

• Thermal neutrons have energies comparable to lattice vibrations

• Neutrons are non-destructive• Neutrons interact weakly

– they penetrate into the bulk• Neutrons interact via a simple point-like potential

– amplitudes are straightforward to interpret• Neutrons have a magnetic moment

– great for magnetism• Neutrons see a completely different contrast to x-rays

– e.g. hydrogen is very visible

12

Why neutrons?

13Element (Z)

Mas

s Att

enua

tion

Coef

ficie

nt (c

m/g

)

ISIS

ILL

LLB

TUD HZBFRM2

PSIBNC

JEEP-II

Main European neutron sources 2019

ISIS

ILL

LLB

TUD HZBFRM2

PSIBNC

JEEP-II

Main European neutron sources 2019

Major neutron sources in the world

ILL (F)HZB (D)LLB (F)PSI (CH)FRM-II (D)HFIR (USA)NIST (USA)JRR-3 (J)PIK (RU)IBR-2 (RU)ISIS-TS1 (UK)ISIS-TS2 (UK)SNS-FTS (USA)SNS-STS (USA)J-PARC (J)CSNS (CN)ESS (SE)

2000 2010 2020

ContinuousPulsed

Major neutron sources in the world

ILL (F)HZB (D)LLB (F)PSI (CH)FRM-II (D)HFIR (USA)NIST (USA)JRR-3 (J)PIK (RU)IBR-2 (RU)ISIS-TS1 (UK)ISIS-TS2 (UK)SNS-FTS (USA)SNS-STS (USA)J-PARC (J)CSNS (CN)ESS (SE)

2000 2010 2020

ContinuousPulsed

FissionFissionFission

Fission

FissionFission

FissionFission

FissionSpallation

SpallationSpallation

SpallationSpallation

Spallation

Spal

Spallation

ILL Reactor Neutron Source

ILL Reactor Neutron Source

ILL Reactor Neutron Source

ILL Reactor Neutron Source

• Highly-enriched uranium• Compact design for high brightness• Heavy-water cooling• Single control rod• 57MW thermal power• Cold, thermal, hot sources

ILL Reactor Neutron Source

2 m

cold thermal hot

moderator liquid D2 Liquid D2O

graphite

moderator temperature

20K 300K 2000K

neutron wavelength

3→20Å 1→3Å 0.3→1Å

• Highly-enriched uranium• Compact design for high brightness• Heavy-water cooling• Single control rod• 57MW thermal power• Cold, thermal, hot sources

ILL Reactor Neutron Source

2 m

1st guide hall(20 instruments)

2nd guide hall (7 instruments)

ILL Reactor Neutron Source

ILL Reactor Neutron Source

ILL Reactor Neutron SourceVCSHCS

Ther

mal

be

am tu

bes

HS

ILL Moderator Brightnesses

Spallation vs Fission

200 MeV/fission2.35 – 1 = 1.35 neutrons freed=> 150 MeV/neutron

Fission

Spallation vs Fission

200 MeV/fission2.35 – 1 = 1.35 neutrons freed=> 150 MeV/neutron

Spallation

Fission

1 GeV proton in:250 MeV becomes mass (endothermic reaction)30 neutrons freed=> 25 MeV/neutron

Spallation vs Fission

200 MeV/fission2.35 – 1 = 1.35 neutrons freed=> 150 MeV/neutron

Spallation

Fission

1 GeV proton in:250 MeV becomes mass (endothermic reaction)30 neutrons freed=> 25 MeV/neutron

6x more neutrons per unit heat

Spallation Sources

• Spallation: 10x higher neutron brightness per unit heat– about 6x more neutrons per unit heat– about ½ the production volume

• 1 MW spallation source = 10 MW reactor– e.g. 800 MeV at 1.25 mA (PSI)– e.g. 3 GeV at 0.4 mA (J-PARC)

• Peak brightness >> time-average brightness

Spallation Sources

• Spallation: 10x higher neutron brightness per unit heat– about 6x more neutrons per unit heat– about ½ the production volume

• 1 MW spallation source = 10 MW reactor– e.g. 800 MeV at 1.25 mA (PSI)– e.g. 3 GeV at 0.4 mA (J-PARC)

• Peak brightness >> time-average brightness

32

log(

Inte

nsity

@λ=

5Å)

0 20 40 60 80 100 120 time (ms)

1

0.1

ISIS-TS1 128kW ISIS-TS2 32kW

100μs

0

ILL 57MW

Particle Wave

De Broglie Relations

The Time-of-Flight (TOF) Method

distance

time

Spallation Sources

• Ion source– H+ or H-

• Accelerator– linear accelerator “linac”– cyclotron

• Compressor ring (for short-pulse sources)– stripper to convert H- to H+

– synchrotron• Target• Reflector• Moderators

35

Linear accelerator: LINAC

Linear accelerator: LINAC

SNS ion source: H-

Different types of Linac

Drift-Tube Linac (DTL)

Radio-Frequency Quadrupole (RFQ)Elliptical cavities

“Low β” / “High β”

β=v/c

Cyclotrons

40

Patented by Lawrence, 1934

PSI 590 MeV cyclotron

Synchrotron

41

ISIS

• Synchronise: – B-field: bend– E-field: accelerate– E & B field: focus– magnets to each other

• Injection– stripper foil

• Extraction– kicker magnet

Synchrotron

42

ISIS

• Synchronise: – B-field: bend– E-field: accelerate– E & B field: focus– magnets to each other

• Injection– stripper foil

• Extraction– kicker magnet

H+

H-

B-field

stripper foil

Synchrotron

• Δtlinac ≈ 1 ms• Ering ≈ 1 GeV

– v ≈ 3×108 m/s

• Lring ≈ 200 m• Δtring ≈ 1 μs

ESS, Lund, Sweden (first neutrons in 2023)

44

SINQ, PSI, Switzerland

45

ISIS Spallation SourceISIS, UK (160kW)

SNS, Oak Ridge, USA (1MW)

47

J-PARC, Tokai, Japan (500kW)

J-PARC, Tokai, Japan (500kW)

ISIS target 1: solid tungsten

SNS target: liquid mercury

ESS target

53

2.5m tungsten wheel

ISIS TS2 Target

Target: 66mm W

Target-Reflector-Moderator Neutronics

• Target produces neutrons in > MeV range• Moderators contain H to thermalise neutrons

– largest scattering cross-section (80b)– lower mass: same as neutron– on average, ½ energy lost per collision– 100 MeV -> 10 meV requires about 25 collisions

• Moderators embedded in reflector, usually D2O-cooled Be– minimal absorption– large scattering cross-section (8b)– little thermalisation

55

Target-Reflector-Moderator Neutronics

56

Be

Target plane

Targetprotons in

Target-Reflector-Moderator Neutronics

57

protons in

Be

10cm above/below Target

Target-Reflector-Moderator Neutronics

58

protons in

Be

10cm above/below Target

Target-Reflector-Moderator Neutronics

59

protons in

Be

10cm above/below Target

Target-Reflector-Moderator Neutronics

600 100μs

200μs

protons in

Be

10cm above/below Target

Target-Reflector-Moderator Neutronics

61

Cd

0 100μs

200μs

Cadmium absorption

Decoupling

protons in

Target-Reflector-Moderator Neutronics

62

Cd

0 100μs

200μs

Cadmium absorption

Decoupling

Target-Reflector-Moderator Neutronics

63

Cd

0 100μs

200μs

Cadmium absorption

Gd

DecouplingPoisoning

Gadolinium absorption

Time-of-flight (TOF) resolution

distance

time

Δt

Time-of-flight (TOF) resolution

distance

time

Δt

1014

1015

1016

1017

10 - 4 10 - 3 10 - 2 10 - 1 10 0 10 1

Pul

se P

eak

Inte

nsity(

n/cm

2/s

/sr/

eV/p

ulse

)

Coupled

Decoupled

Hg TargetBe reflector1MW 25Hz

Poisoned(center) ILL cold (56 MW)

Energy (eV)

Peak Structure at 5meVCoupledDecoupledPoisoned

J-PARC H2 moderators at 1MW

Moderator Decoupling and Poisoning

1014

1015

1016

1017

10 - 4 10 - 3 10 - 2 10 - 1 10 0 10 1

Pul

se P

eak

Inte

nsity(

n/cm

2/s

/sr/

eV/p

ulse

)

Coupled

Decoupled

Hg TargetBe reflector1MW 25Hz

Poisoned(center) ILL cold (56 MW)

Energy (eV)

Intensity

λ=1Å

λ=2Å

λ=5Å

0 100 200 300

time (μs)

Moderator Decoupling and Poisoning

SNS moderators

decoupled poisoned H2

coupled H2

coupled H2decoupled poisoned H2O

Top Bottom

20 cm

ISIS TS2 Target

coupled solid CH4

coupled H2

decoupled poisoned solid CH4

ISIS-TS1 moderators at 160kW

Moderator Temperature

1 GWSNS instantaneous power on target:

17kJ in 1μs: 17 x

Reaches limits of spallation source technology:shock waves in target, space charge density in accelerator ring, …

Beyond Short-Pulse Limits

1 GWSNS instantaneous power on target:

17kJ in 1μs: 17 x

ESS instantaneous power on target: 125MW360kJ in 2.86ms

Beyond Short-Pulse Limits

Long-pulse performance

734 time (ms)

Brig

htne

ss (n

/cm

2 /s/s

r/Å) ×1013

0 1 2 3

5

10

λ = 5 Å

ISIS TS1128 kW

ISIS TS232 kW

SNS2 MW

JPARC1 MW

ILL 57 MW

ESS 5MW

ESS 2MW

Adapting the pulse width

74

0 100μs 200μs 0 3 ms

Inte

nsity

Inte

nsity

Short-Pulse Source- set pulse width by choosing moderator

Long-Pulse Source (ESS)- set pulse width using pulse-shaping chopper

coupled

decoupled

poisoned

Summary

• Neutron facilities– overview & trends

• Reactor-based sources– Institut Laue-Langevin

• Fission vs Spallation– ISIS

• Components of a spallation neutron source– accelerator– target– moderators

• Neutron source time structure– the time of flight method

• Long-pulse neutron sources

75

Thank You!

76

top related