new methodologies for oligosaccharide synthesis · michigan state university march 10, 2004....

Post on 31-Jul-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

New Methodologies for Oligosaccharide Synthesis

Man-Kit LauDepartment of ChemistryMichigan State University

March 10, 2004

Outline

1. Introduction

2. Solid Phase Approach: Automated Oligosaccharide Synthesizer

3. Solution Phase Approach: OptiMer One-Pot Oligosaccharide Synthesis

4. Summary

Outline

1. Introduction

2. Solid Phase Approach: Automated Oligosaccharide Synthesizer

3. Solution Phase Approach: OptiMer One-Pot Oligosaccharide Synthesis

4. Summary

What are Oligosaccharides?

Lehninger, A. L.; Nelson, D. L.; Cox, M. M. Principles of Biochemistry, Worth Publishers, Inc., 1993.

OHHHHOOHHOHH

CH2OH

HO

D-Glucose

OHO

OHO

OHO

Maltotriose

OH

HO

HOOH

OOH

OOH

HO

HO

OHO

OH

HO

HOOH

HOW?

Traditional View of Oligosaccharides

Starch Cellulose

Lehninger, A. L.; Nelson, D. L.; Cox, M. M. Principles of Biochemistry, Worth Publishers, Inc., 1993.

Plant Animal

Energy Storage Starch GlycogenStructural Scaffold Cellulose Chitin

Cell Surface Glycoproteins

Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.Sears, P.; Wong, C.-H. Angew. Chem. Int. Ed. 1999, 38, 2300.

cell surface glycoproteins act asprotein ligands for cell-cell recognition

Synthetic Chemistry is Key to Studying Glycobiology

Koeller, K. M.; Wong, C.-H. Chem. Rev. 2000, 100, 4465.

Protein and DNA Synthesis: Template Driven

Glycoprotein Synthesis: Post-Translational Attachment

Biopolymer Primary Synthetic Methods

DNA 1. Automated nucleic acid synthesis2. Polymerase chain reaction (PCR)

Protein 1. Automated peptide synthesis2. Overexpression system3. Even unnatural proteins can be made now

Oligosaccharide 1. Isolation from natural sources2. Enzymatic synthesis3. Chemical synthesis

Glycoprotein Biosynthesis

Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.

Structural homogeneity isdifficult to achieve.

Possible Routes to Homogeneous Oligosaccharides

Oligosaccharides

Natural Sources

Chemical Synthesis

Enzymatic Synthesis

Koeller, K. M.; Wong, C.-H. Chem. Rev. 2000, 100, 4465.Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.

Sears, P.; Wong, C.-H. Science 2001, 291, 2344.

Ultimate Goal: General and Efficient Synthesis of Oligosaccharides

¥

Oligosaccharides Synthesis: A Big Challenge

Paulsen, H. Angew. Chem. Int. Ed. Engl. 1982, 21, 155.

“ There are no universal reaction conditions for oligosaccharides synthesis” - Hans Paulsen

Structural Complexity of DNA and Peptides

Monomeric Building Blocks Oligomeric Biomolecules

DNA (linear)O

OH

baseO(HO)2PONucleotide

R COOH

NH2

Amino Acid Polypeptide (linear)

Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

nucleotide

amino acid

Structural Complexity of Oligosaccharides

Monomeric Building Blocks Oligomeric Biomolecules

a

b

Linear and branched!

Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

OO OH

HOO

HO

HO

OHO

HO

O

OH

HO

OH

HO HO

OHO OH

HOOH

HOpyranoside

Oligomer Oligonucleotides Oligopeptides Oligosaccharides

Dimer 2 2 20Trimer 6 6 720Tetramer 24 24 34,560Pentamer 120 120 2,144,640

Possible Isomers Among Biopolymers

Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

2,144,640

Selective Protection and Deprotection Steps

OOH

HOHO

OHOH

OHHHHOOHHOHH

CH2OH

HOanomeric hydroxyl

3 x 2o hydroxyl

1o hydroxyl

OHO

OH

HO

H2NOH glucosamine

1o amine

aldehyde

Selective Protection and Deprotection Steps

Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

Ac =

O

BzO

BzO

OBzOCH3

1. ClCH2C(O)Cl DMF, -50oC, 55%2. BzCl, pyridine, 90%

O

BzO

BzO

OBzOCH3

thioureaCH2Cl2

OMCA

OH

OMCA = monochloroacetyl = Bz =

O OCl

O

HO

HO

OHOCH3

methyl-D-glucopyranoside

OH

Glycosidic Bond Formation

L = SRBr O O

NH

CCl3, , , etc.

R = etc.O O

O

O

O, , ,

OOR

RORO

ROL

OOR

RORO

ROOR'

OOR

RORO

RO

OOR

RORO

RO

activator (Lewis Acid)

R'O

H

glycosyl donor

glycosyl acceptor

oxonium ion

Classical Approaches Towards Oligosaccharide Synthesis

Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

1. Chemical Synthesis: eg. Glycosyl halide coupling.

OOAc

AcOAcO

AcO

ROH, Ag2CO3, CH2Cl2-AgBr

OOAc

AcOAcO

AcOORBr

OOAc

AcOAcO

OO

O

OO

OAc

RO

H

AcOAcO

anchimeric assistance-AgBr

Classical Approaches Towards Oligosaccharide Synthesis

Scigelova, M.; Singh, S.; Crout, D. H. G. J. Chem. Soc., Perkin Trans. 1 1999, 7, 777.Koeller, K. M.; Wong, C.-H. Chem. Rev. 2000, 100, 4465.

2. Enzymatic Synthesis: eg. Synthesis of the core trisaccharide of N-linked glycoprotein.

OOH

HOHO

OH

OpNP

OOH

HOHO

OOH

OHONHAc

NHAcOH

+ OOH

OHO

OOH

OHONHAc

NHAcOH

OOH

HOHO

OHb-mannosidase fromHelix pomatia (edible snails)

pNP: para-nitrophenyl

20% yield

Outline

1. Introduction

2. Solid Phase Approach: Automated Oligosaccharide Synthesizer

3. Solution Phase Approach: OptiMer One-Pot Oligosaccharide Synthesis

4. Summary

Solid Phase: Automated Oligosaccharide Synthesizer

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science, 2001, 291, 1523.

The first automated oligosaccharidesynthesizer based on Applied Biosystems Inc. Model 433APeptide synthesizer

Solid Phase Synthesis of Oligosaccharides

Fréchet, J. M. J.; Schuerch, C. J. Am. Chem. Soc. 1971, 93, 492.

...

P = protecting group

OO

P1OOP2

OP3

OO

P1OOP2

OH

OO

P1OOP2

OO

P9OOP10

OP11

OO

P5OOP6

OP7

OP4 OP4 OP4

OP8

OO

P1OOP2

OO

P5OOP6

OH

OP4

OP8

OO

P1OOP2

OO

P5OOP6

OP4

OP8

OP12

Deprotection Coupling

Deprotection

Coupling

1 1 1

2

1

2

1

2

3

HCH2C

n

=

First Solid Phase Synthesis of Disaccharide

Fréchet, J. M. J.; Schuerch, C. J. Am. Chem. Soc. 1971, 93, 492.

HCH2C

n

OH= R =

O

NO2

75% yieldOBnOBnO

O

OH

BnO

OBnOBnO

OR

BnO

O

OBnO

BnO

BnO

BrO

BnOBnO

OR

BnO O

Bn =R =

Solid Phase Synthesis of OligosaccharidesUsing Glycal Assembly

Randolph, J. T.; McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1995, 117, 5712.

...

P = protecting group

O

P1OOP2

O

P1OOP2

O

P1OOP2

O

P3OOP4

OO

OH

O

P3OOP4

HO

[O]

O

P1OOP2

O

P3OOP4

O

OH

O

glycal

O

P1OOP2

O

P3OOP4

O

OH

O

P6OOH

P5OO

P6OO

P5O

OH

1,2-epoxyglycal

O OO O O

OO

= HCH2C

n

Si(iPr)2

Tetrasaccharide Synthesis Using Glycal Assembly

Randolph, J. T.; McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1995, 117, 5712.

= HCH2C

n

Si(iPr)2

O

74% overall yield

OO

O

OO O

O

O

OO

OO

O

O

O

OO

O

OO

OHO

OO

O

O

OO

O

OO

HO

OO

O

OO

OHO

O

OO

O

OO

HO

OO

O

OO

HO

OO

O

OO

OHO

BnOBnO

OBnOBnO

OH

OO

O

OHO

repeat

O O

O O1.

2.

ZnCl2, THF

CH2Cl2 ZnCl2, THF

, CH2Cl2

Bn =

Choice of Glycosylating Agents

Plante, O. J.; Andrade, R. B.; Seeberger, P. H. Org. Lett. 1999, 1, 211.Schmidt, R. R. Angew. Chem. Int. Ed. Engl. 1986, 25, 212.

O

tBu O

O

O

N

N

OAc =

Lev =DMAP =

Bn =

Piv =

O

PivO

OLev

BnOBnO O

P(OBu)2

O

OOBn

BnOBnO O

NH

CCl3

AcO

OBnOBnO

OLev1. DMDO2. HOP(O)(OBu)23. PivCl, DMAP

OOBn

BnOBnO OH

K2CO3, Cl3CCNAcO

The Octenediol Linker

Andrade, R. B.; Plante, O. J.; Melean, L. G.; Seeberger, P. H. Org. Lett. 1999, 1, 1811.

Merrifield's resinHC

H2C

n

= ClNO O

Br

Cl

Merrifield's resin

HO

O

OPivO

OBnBnOBnO

O

O

O

PivO

OLev

BnOBnO O P(OBu)2

O

O

PivO

OLev

BnOBnO O

O

PivO

OLev

BnOBnO OR

1. NBS2. ROH

1. TMSOTf2.

RuCl

ClPCy3

PCy3

PhH2C CH2

NBS = O

O

OLev =

O

tBuPiv = Cy =

Automated Solid Phase Synthesis of Protectedb-Phytoalexin Elicitor (PE)

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.

O

PivO

O

BnOBnO O

O

PivO

BnOO

O

BnO

OBn

BnOBnO

O

PivO

BnOBnO O

O

PivO

BnOO

O

BnO

BnOBnO

O

OBnOLev

Plant glucan oligosaccharide.

Induce plant to produce antibiotic phytoalexin.

O

O

OLev =

Piv =O

tBu

Bn =

Automated Solid Phase Synthesis of Protectedb-Phytoalexin Elicitor (PE)

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.

Deprotection Coupling

HO

O

O

PivO

OLev

BnOBnO O

P(OBu)2

O

O

PivO

OH

BnOBnO O

O

O

PivO

OLev

BnOBnO O

O

TMSOTfH2NNH23 equiv.

O

O

OLev =

Piv =O

tBu

Bn =

O

PivO

OH

BnOBnO O

O

Automated Solid Phase Synthesis of Protectedb-Phytoalexin Elicitor (PE)

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.

O

PivO

BnOO

O

BnO

OBn

BnOBnO

OLev

OP(OBu)2

O

O

PivO

BnOO

O

BnO

OBn

BnOBnO

OLev

O

PivO

O

BnOBnO O

O

O

PivO

BnOO

O

BnO

OBn

BnOBnO

OH

O

PivO

O

BnOBnO O

O

Deprotection CouplingTMSOTfH2NNH2

10 equiv.

O

O

OLev =

Piv =O

tBu

Bn =

O

PivO

BnOO

O

BnO

OBn

BnOBnO

OH

O

PivO

O

BnOBnO O

O

Automated Solid Phase Synthesis of Protectedb-Phytoalexin Elicitor (PE)

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.

O

PivO

BnOO

O

BnO

OBn

BnOBnO

O

PivO

O

BnOBnO O

O

O

PivO

OH

BnOBnO O

O

PivO

BnOO

O

BnO

OBn

BnOBnO

O

PivO

O

BnOBnO O

O

O

PivO

OLev

BnOBnO O

Deprotection CouplingO

PivO

OLev

BnOBnO O

P(OBu)2

O

TMSOTfH2NNH210 equiv.

O

O

OLev =

Piv =O

tBu

Bn =

O

PivO

BnOO

O

BnO

OBn

BnOBnO

O

PivO

O

BnOBnO O

O

O

PivO

OH

BnOBnO O

Automated Solid Phase Synthesis of Protectedb-Phytoalexin Elicitor (PE)

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.

O

PivO

BnOO

O

BnO

OBn

BnOBnO

OLev

OP(OBu)2

O

O

PivO

BnOO

O

BnO

OBn

BnOBnO

O

PivO

O

BnOBnO O

O

O

PivO

BnOBnO O

O

PivO

BnOO

O

BnO

OBn

BnOBnO

O

OLev

Deprotection Coupling

Cleavage

O

PivO

O

BnOBnO O

O

PivO

BnOO

O

BnO

OBn

BnOBnO

O

PivO

BnOBnO O

O

PivO

BnOO

O

BnO

BnOBnO

O

OBnOLev

TMSOTf10 equiv.

O

O

OLev =

Piv =O

tBu

Bn =

H2C CH2RuCl

ClPCy3

PCy3

Ph

Coupling Cycle For Phosphate Donors

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.

Step Function Reagent Time/min

1 Couple 5 equiv. donor and 5 equiv. TMSOTf 302 Wash CH2Cl2 63 Couple 5 equiv. donor and 5 equiv. TMSOTf 304 Wash 1:9 (MeOH : CH2Cl2) 45 Wash THF 46 Wash 3:2 (pyridine : acetic acid) 37 Deprotection 2 x 20 equiv. H2NNH2 808 Wash 3:2 (pyridine : acetic acid) 39 Wash 1:9 (MeOH : CH2Cl2) 4

10 Wash 0.2 M acetic acid in THF 411 Wash THF 412 Wash CH2Cl2 6

Each cycle: 3 hours

O

BzO

O

BzOBzO O

NO2

O

O

BzO

BnOO

O

AcO

OAc

AcOAcO

O

BzO

BzOBzO O

O

BzO

BnOO

O

AcO

OAc

AcOAcO

O

AcO

OAc

AcOAcO O

O

Solid Phase Synthesis of Protectedb-Phytoalexin Elicitor

Nicolaou, K. C.; Winssinger, N.; Pastor, J.; DeRoose, F. J. Am. Chem. Soc. 1997, 119, 449.

O

BzO

OH

BzOBzO O

NO2

O

O

BzO

O

BzOBzO O

NO2

O

O

BzO

BnOO

O

AcO

OAc

AcOAcO

O

BzO

OH

BzOBzO O

c(a) , DMTST, then Et3NOOTBDPS

BnOFmocO

OBzSPh

OOAc

AcOAcO

OAcSPh(b) , DMTST, then HF/pyr.

OOTBDPS

BzOBzO

OBzSPh

(c) , DMTST, then HF/pyr.

O

BzO

O

BzOBzO O

NO2

O

O

BzO

OTBDPS

BnOHOa

O

BzO

O

BzOBzO O

NO2

O

O

BzO

OH

BnOO

O

AcO

OAc

AcOAcO

b

MeS

SMe

MeOTfDMTST =

TBDPS =

Fmoc = O

O

Si(Ph)2(tBu)

O

BzO

O

BzOBzO OAc

O

BzO

BnOO

O

AcO

OAc

AcOAcO

O

BzO

BzOBzO O

O

BzO

BnOO

O

AcO

OAc

AcOAcO

O

AcO

OAc

AcOAcO O

O hv

20% overall yield

Automated vs. Non-Automated Syntheses

automated (Seeberger) non-automated (Nicolaou)

automated labor intensive10 machine hours 122 reaction hours

80% yield 20% yield

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.Nicolaou, K. C.; Winssinger, N.; Pastor, J.; DeRoose, F. J. Am. Chem. Soc. 1997, 119, 449.

O

BzO

O

BzOBzO OAc

O

BzO

BnOO

O

AcO

OAc

AcOAcO

O

BzO

BzOBzO O

O

BzO

BnOO

O

AcO

OAc

AcOAcO

O

AcO

OAc

AcOAcO O

O

O

PivO

O

BnOBnO O

O

PivO

BnOO

O

BnO

OBn

BnOBnO

O

PivO

BnOBnO O

O

PivO

BnOO

O

BnO

BnOBnO

O

OBnOLev

Other Protected Oligosaccharides Synthesized withAutomated Synthesizer Approach

Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.Hewitt, M. C.; Seeberger, P. H. Org. Lett. 2001, 3, 3699.

Love, K. R.; Seeberger, P. H. Angew. Chem. Int. Ed. 2004, 43, 602.

OOBn

BnOBnO

O

OOBn

OBnO

O

O

OOBn

BnOBnO

OAc

OOBn

BnOOPiv

BnOpolymannosideLeishmania tetrasaccharide

50% yield(84% average yield per unit)

OOBn

BnO OOBn

HOO

OOBn

PivO

OO

OBn

PivOO O

OBn

PivO

OOTCAHN BnO

OPiv

BnOBnO

HO

Lewisx pentasaccharide

12.6% yield (66% average yield per unit)

Piv =O

tBu

Bn =

OAc =

NH

O

CCl3TCAHN =

OOBn

BnOBnO

O

OOBn

BnOBnO

O

O

OOBn

BnOBnO

OAc

n

n = 3, 74% yield (90% average yield per unit) n = 5, 42% yield (84% average yield per unit)n = 8, 34% yield (87% average yield per unit)

OO

OH

O OOH

HO ORHOO

OOH

O

HOO

AcNH

OOH

HOO

HO HO

OOH

HOHO

HO2C

OH

HO

HO

NHAcHO

How About More Complex Molecules?

Sialyl Lewisx tetrasaccharide4% overall yield in 8 steps(Denishefsky and Wong, 1992)

Fucosyl GM15% overall yield in 15 steps(Denishefsky, 1999)

Danishefsky, S. J.; Gervay, J.; Peterson, J. M.; McDonald, F. E.; Koseki, K.; Oriyama, T.; Griffith, D. A.;Wong, C.-H.; Dumas, D. P. J. Am. Chem. Soc. 1992, 114, 8329.

Allen, J. R.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 10875.

OOH

HO OOH

ORHOO

NHAcO

OHHO

HO

O

O

HO

OHOH

AcHNHO

HO2C

O

Outline

1. Introduction

2. Solid Phase Approach: Automated Oligosaccharide Synthesizer

3. Solution Phase Approach: OptiMer One-Pot Oligosaccharide Synthesis

4. Summary

Solution Phase: OptiMer Programmed One-PotOligosaccharide Synthesis

Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

The “Armed - Disarmed” Concept

Mootoo, D. R.; Date, V.; Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 2662.Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

OL

+HO

OL

HO

activator

O

OO

L

HO

Armed Disarmed

React Faster React Slower

O

OL

+HO

HO

Protecting Groups Control

Mootoo, D. R.; Date, V.; Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 2662.Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

OL

+HO

OL

HO

activator

EDG

EWG

O

OO

L

HO

EDG

EWG

EDG = electron donating groupEWG = electron withdrawing group

O

OL

+HO

HO

EDG

EWG

Disaccharide Synthesis Using Protecting Groups Control

Mootoo, D. R.; Date, V.; Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 2662.

OBzO

O

OBzO

OBnO

BnO

OBn

BnO

BzO

OBzO

O

OBzO

OBzO

BzO

is NOT formedBzO

OH

BzO

armed

disarmed

Bn =

OBz =

62% yielda : b = 1 : 1

NO OBr

NBS =

NBS

OBzO O

BzO

OBnO O

+

BzO

OH

BnO

OBn

BnO

Disaccharide Synthesis Using Protecting Groups Control

Mootoo, D. R.; Date, V.; Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 2662.

Bn =

OBz =

OOBn

BnOBnO

BnO

OOBn

BnOBnO

BnO

O

OBzOBzO

BzOO

OOBn

BnOBnO

BnOO

Br O

Br

HO

OBzO

O

OBzO

OBnO

BnO

OBn

BnO

BzO

NO O

Br

Anomeric Reactivity Control

Mootoo, D. R.; Date, V.; Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 2662.Linhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH: Weinheim, 2003.

L1 is better leaving group than L2

OL2

+HO

OL1

HO

activatorO

OO

L2

HOO

OL2

+HO

HO

One-Pot Synthesis of Protected Ciclamycin

Raghavan, S.; Kahne, D. J. Am. Chem. Soc. 1993, 115, 1580.

0.05 equiv. TfOH-78oC

O

O O

O

O

S

SO

OBn

OBn+

HO

O

O

O

O

O

O

S

OBn

OBn

Ciclamycin

-70oC

Ciclamycin25% overall yield S

OSO

OMe S> >>

most reactiveless reactive least reactive

O

O

O O

SSSO O

OMe

TMSOOBn

HOOBn

+ +

Bn =

Strategy for Sequential One-Pot Linear andBranched Oligosaccharides Synthesis

Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

OX

OXHO O

XHO OORHO

less reactivemost reactive

donor

least reactive reducing endO O O O

ORO O O

OX

OXHO O

ORHO

less reactivemost reactive

donor

reducing endO O OO O OR

OO O

O

OptiMer Database of Thioglycosyl Donors

Ritter, T. K.; Mong, K.-K. T.; Liu, H.; Nakatani, T.; Wong, C.-H. Angew. Chem. Int. Ed. 2003, 42, 4657.

Number in bracket represents the Relative Reactivity Value (RRV)

OptiMer Database of Thioglycosyl Donors

Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

OptiMer Database of Thioglycosyl Donors

Ye, X.-S.; Wong, C.-H. J. Org. Chem. 2000, 65, 2410.

OptiMer Database of Thioglycosyl Donors

Ritter, T. K.; Mong, T. K.-K.; Liu, H.; Nakatani, T.; Wong, C.-H. Angew. Chem. Int. Ed. 2003, 42, 4657.

Relative Reactivity in Competitive Reactions

Zhang, Z.; Ollmann, I. R.; Ye, X. -S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

O

OMeOH (5eq.)

NIS

O

O

SR

SR

OMe

OMe

donor (D0)

reference (R0)

product (Dt)

referenceproduct (Rt)

HPLC analysis

O

STol

OAc

AcOAcO

AcO

reference compound =

NO O

I

NIS =

Relative Reactivity in Competitive Reaction

Larger the number, higher the reactivity

RRV = In([Dt]/[D0]) In([Rt]/[R0])

kD

kR=

Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

The result is normalized based on O

STol

OAc

AcOAcO

AcO

RRV = 1

Dt

D0

R0

Rt

t = 0ht = 2h

Sequential One-Pot Synthesis of Globo H

Bilodeau, M. T.; Park, T. K.; Hu, S.; Randolph, J. T.; Danishefsky, S. J.; Livingston, P. O.; Zhang, S.J. Am. Chem. Soc. 1995, 117, 7840.

O

O

O O

OHOH

HOO

O

OHOH OHOH

OO

OOH

HO OOH

HO OR

HOAcNH

HOHO

OOHHO

HO Globo H

Globo H1% overall yield in 19 steps(Denishefsky, 1995)

Human breast tumor associated antigen.

First total synthesis was reported by Danishefsky in 1995 using glycal assembly.

Sequential One-Pot Synthesis of Globo H

Burkhart, F.; Zhang, Z.; Wacowich-Sgarbi, S.; Wong, C.-H. Angew. Chem. Int. Ed. 2001, 40, 1274.

O

O

O O

OHOH

HOO

O

OHOH OHOH

OO

OOH

HO OOH

HO OR

HOAcNH

HOHO

OOHHO

HO Globo H

O STolOBn

OBnBnO

O O OOBn

BnO O

OBz ONBz

OTrocHN OClBn

BzOBnO NBzO

STolHO

OHO

OBn

BnO OOBn

BnO ORBnO

BnOO

RRV = 72,000

RRV = 6

OptiMer

Globo H

(67% yield)ClBn =

ClO

NO2

NBz =

TrocHN = NH

O

O CCl3

R =

Bn =

OMe

Sequential One-Pot Synthesis of Globo H

Burkhart, F.; Zhang, Z.; Wacowich-Sgarbi, S.; Wong, C.-H. Angew. Chem. Int. Ed. 2001, 40, 1274.

O STolOBn

OBnBnO

O O OOBn

BnO O

OBz ONBz

OTrocHN OClBn

BzOBnO NBzO

STolHO

RRV = 72,000

RRV = 6

NIS, TfOH, CH2Cl2

O

O

O O

OHOH

HOO

O

OHOH OHOH

OO

OOH

HO OOH

HO OR

HOAcNH

HOHO

OOHHO

HO Globo HGlobo H

1. Zn-AcOH2. Ac2O-pyridine3. NaOMe-MeOH4. H2-Pd/C

20% overall yield

NO O

I

NIS =

ClBn =Cl

O

NO2

NBz =

TrocHN = NH

O

O CCl3

R =

Bn =

OMe

OHO

OBn

BnO OOBn

BnO ORBnO

BnOO

O

O

O OOBn

BnOO

O

OBz ONBz

OO

OOBn

BnO OOBn

BnO OR

ClBnOTrocNH

BnOBnO

OOBnOBn

BnO Globo H

BzO BzO BzO

41% yield

Other Oligosaccharides Synthesized with OptiMer

Zhang, Z.; Kikura, K.; Huang, X.-F.; Wong, C.-H. Can. J. Chem. 2002, 80, 1051.Mong, T. K.-K.; Lee, H.-K.; Duron, S. G.; Wong, C.-H. Proc. Natl. Acad. Sci. USA 2003, 100, 797.

Sialyl Lewisx hexasaccharide8% overall yieldin 2 one-pot reactions(cf. 4% overall yield in 8 steps)

OO

OH

O OOH

HO ORHOO

OOH

O

HOO

AcNH

OOH

HOO

HO HO

OOH

HOHOHO2C

OH

HO

HO

NHAcHOFucosyl GM16% overall yield in 3 one-pot reaction(cf. 5% overall yield in 15 steps)

And more..

OOH

HO OOH

HOO

NHAcO

OHHO

HO

O

O

HO

OHOH

AcHNHO

HO2C

OO

OH

OHOH

O O

OHOR

OH

HOO

Comparison of the Two Approaches

Common Advantages:

They both reduce labor cost.They both allow for high throughput synthesis of oligosaccharides

Advantages for the one-pot approach over the automated synthesizer:

It fundamentally helps planning of oligosaccharide synthesisIt involves no intermediate deprotectionScale-up is possible

Heparin-Like Oligosaccharides: A Synthetic Challenge

Belongs to the family of glycosaminoglycans (GAG).

Heparin is widely used as an anticoagulant.

Jacquinet, J.-C.; Petitou, M.; Duchaussoy, P.; Lederman, I.; Choay, J.; Torri, G.; Sinay, P.Carbohydr. Res. 1984, 130, 221.

Yu, H. N.; Furukawa, J.-I; Ikeda, T.; Wong, C.-H. Org. Lett. 2004, 6, 723.Orgueira, H. A.; Bartolozzi, A.; Schell, P.; Litjens, R. E. J. N.; Palmacci, E. R.;

Seeberger, P. H. Chem. Eur. J. 2003, 9, 140.

OOSO3

OHO

OOHO

O3SHNO

OHOO

HOOSO3

OOSO3

O3SOO3SHN

OOSO3

OHO

O3SHN

CO2

O2CO

a

a

iduronic acid

Outline

1. Introduction

2. Solid Phase Approach: Automated Oligosaccharide Synthesizer

3. Solution Phase Approach: OptiMer One-Pot Oligosaccharide Synthesis

4. Summary

Summary

1. Novel strategies towards oligosaccharide synthesis were discussed:

- Solid Phase Automated Oligosaccharide Synthesizer

- Solution Phase OptiMer One-Pot Oligosaccharide Synthesis

2. From a chemical point of view, the reactivity based one-pot strategy makesthe design of oligosaccharide synthesis easier.

Acknowledgement

Prof. John FrostDr. Karen Frost

Prof. Chris ChangProf. Babak BorhanProf. Joan Broderick

Frost Group

The End

Example in Calculating RRV

O

O

STol

OAc

AcOAcO

AcO1:

O

OH

OBn

STolO

PMBO

LevO

BnO OBn

40:

Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

Accuracy Measurement of Calculated RRV

Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

Experimental values are shown without parenthesesCalculated values are shown in parentheses

Relationship Between Relative Rates andSubstrate Comsumption

Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

top related