newton’s divided difference polynomial method of interpolation

Post on 25-Feb-2016

39 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Newton’s Divided Difference Polynomial Method of Interpolation. Chemical Engineering Majors Authors: Autar Kaw, Jai Paul http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates. - PowerPoint PPT Presentation

TRANSCRIPT

http://numericalmethods.eng.usf.edu 1

Newton’s Divided Difference Polynomial

Method of InterpolationChemical Engineering Majors

Authors: Autar Kaw, Jai Paul

http://numericalmethods.eng.usf.eduTransforming Numerical Methods Education for STEM

Undergraduates

Newton’s Divided Difference Method of

Interpolation

http://numericalmethods.eng.usf.edu

http://numericalmethods.eng.usf.edu3

What is Interpolation ?Given (x0,y0), (x1,y1), …… (xn,yn), find the value of ‘y’ at a value of ‘x’ that is not given.

http://numericalmethods.eng.usf.edu4

Interpolants Polynomials are the most

common choice of interpolants because they are easy to:

EvaluateDifferentiate, and Integrate.

http://numericalmethods.eng.usf.edu5

Newton’s Divided Difference Method

Linear interpolation: Given pass a linear interpolant through the data

where

),,( 00 yx ),,( 11 yx

)()( 0101 xxbbxf

)( 00 xfb

01

011

)()(xx

xfxfb

To find how much heat is required to bring a kettle of water to its boiling point, you are asked to calculate the specific heat of water at 61°C. The specific heat of water is given as a function of time in Table 1. Use Newton’s divided difference method with a first order and then a second order polynomial to determine the value of the specific heat at T = 61°C.

http://numericalmethods.eng.usf.edu6

Example

Table 1 Specific heat of water as a function of temperature.

Figure 2 Specific heat of water vs. temperature.

Temperature, Specific heat,

22425282100

41814179418641994217

CT

Ckg

JpC

http://numericalmethods.eng.usf.edu7

Linear Interpolation

50 60 70 80 904185

4190

4195

42004.199 103

4.186 103

y s

f range( )

f x desired

x s110x s0

10 x s range x desired

)()( 010 TTbbTC p

,520 T 4186)( 0 TC p

,821 T 4199)( 1 TC p

)( 00 TCb p 4186

01

011

)()(TT

TCTCb pp

528241864199

43333.0

http://numericalmethods.eng.usf.edu8

Linear Interpolation (contd)

)()( 010 TTbbTC p

),52(43333.04186 T 8252 T

At 61T )5261(43333.04186)61( pC

Ckg

J

9.4189

50 60 70 80 904185

4190

4195

42004.199 103

4.186 103

y s

f range( )

f x desired

x s110x s0

10 x s range x desired

http://numericalmethods.eng.usf.edu9

Quadratic InterpolationGiven ),,( 00 yx ),,( 11 yx and ),,( 22 yx fit a quadratic interpolant through the data.

))(()()( 1020102 xxxxbxxbbxf

)( 00 xfb

01

011

)()(xx

xfxfb

02

01

01

12

12

2

)()()()(

xxxx

xfxfxx

xfxf

b

http://numericalmethods.eng.usf.edu10

Quadratic Interpolation (contd)

40 45 50 55 60 65 70 75 80 854175

4180

4185

4190

4195

42004.199 103

4.179 103

y s

f range( )

f x desired

8242 x s range x desired

))(()()( 102010 TTTTbTTbbTC p

,420 T 4179)( 0 TC p

,521 T 4186)( 1 TC p

,822 T 4199)( 2 TC p

http://numericalmethods.eng.usf.edu11

Quadratic Interpolation (contd)

)( 00 TCb p 4179

01

011

)()(TT

TCTCb pp

425241794186

7.0

02

01

01

12

12

2

)()()()(

TTTT

TCTCTT

TCTC

b

pppp

4282

425241794186

528241864199

40

7.043333.0

3106667.6

http://numericalmethods.eng.usf.edu12

Quadratic Interpolation (contd)

))(()()( 102010 TTTTbTTbbTC p

),52)(42(106667.6)42(7.04179 3 TTT 8242 T

At ,61T )5261)(4261(106667.6)4261(7.04179)61( 3

pC

Ckg

J

2.4191

The absolute relative approximate error a obtained between the results from the first and

second order polynomial is

1002.4191

9.41892.4191

a

%030063.0

http://numericalmethods.eng.usf.edu13

General Form))(()()( 1020102 xxxxbxxbbxf

where

Rewriting))(](,,[)](,[][)( 1001200102 xxxxxxxfxxxxfxfxf

)(][ 000 xfxfb

01

01011

)()(],[

xxxfxf

xxfb

02

01

01

12

12

02

01120122

)()()()(],[],[

],,[xx

xxxfxf

xxxfxf

xxxxfxxf

xxxfb

http://numericalmethods.eng.usf.edu14

General FormGiven )1( n data points, nnnn yxyxyxyx ,,,,......,,,, 111100 as

))...()((....)()( 110010 nnn xxxxxxbxxbbxf

where ][ 00 xfb

],[ 011 xxfb

],,[ 0122 xxxfb

],....,,[ 0211 xxxfb nnn

],....,,[ 01 xxxfb nnn

http://numericalmethods.eng.usf.edu15

General formThe third order polynomial, given ),,( 00 yx ),,( 11 yx ),,( 22 yx and ),,( 33 yx is

))()(](,,,[

))(](,,[)](,[][)(

2100123

1001200103

xxxxxxxxxxfxxxxxxxfxxxxfxfxf

0b

0x )( 0xf 1b

],[ 01 xxf 2b

1x )( 1xf ],,[ 012 xxxf 3b

],[ 12 xxf ],,,[ 0123 xxxxf

2x )( 2xf ],,[ 123 xxxf

],[ 23 xxf

3x )( 3xf

To find how much heat is required to bring a kettle of water to its boiling point, you are asked to calculate the specific heat of water at 61°C. The specific heat of water is given as a function of time in Table 1. Use Newton’s divided difference method with a third order polynomial to determine the value of the specific heat at T = 61°C.

http://numericalmethods.eng.usf.edu16

Example

Table 1 Specific heat of water as a function of temperature.

Figure 2 Specific heat of water vs. temperature.

Temperature, Specific heat,

22425282100

41814179418641994217

CT

Ckg

JpC

http://numericalmethods.eng.usf.edu17

Example The specific heat profile is chosen as

))()(())(()()( 2103102010 TTTTTTbTTTTbTTbbTC p

We need to choose four data points that are closest to CT 61 . ,420 T 4179)( 0 TC p

,521 T 4186)( 1 TC p

,822 T 4199)( 2 TC p

,1003 T 4217)( 3 TC p

http://numericalmethods.eng.usf.edu18

Example 0b

,420 T 4179 1b

7.0 2b ,521 T 4186 3106667.6 3b

43333.0 4101849.3 ,822 T 4199 011806.0

1 ,1003 T 4217

The values of the constants are found to be

0b 4179 1b 7.0 2b 3106667.6 3b 41018493 .

http://numericalmethods.eng.usf.edu19

Example))()(())(()()( 2103102010 TTTTTTbTTTTbTTbbTC p

10042825242101849.3

)52)(42(106667.6)42(7.041794

3

TTTT

TTT

At ,61T

CkgJ

C p

0.4190

826152614261101849.3

)5261)(4261(106667.6)4261(7.04179)61(4

3

The absolute relative approximate error a obtained between the results from the second and third order polynomial is

1000.4190

2.41910.4190

a

%027295.0

http://numericalmethods.eng.usf.edu20

Comparison Table

Order of Polynomial 1 2 3

TCp CkgJ

9.4189 2.4191 0.4190

Absolute Relative Approximate Error ---------- %030063.0 %027295.0

Additional ResourcesFor all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/newton_divided_difference_method.html

THE END

http://numericalmethods.eng.usf.edu

top related