nils erik flick january 13, 2009 - uni-hamburg.detchernia/slides/eigencr… · i codimension 1...

Post on 07-Oct-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Spectral Surface Reconstruction

Nils Erik Flick

January 13, 2009

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

Reconstruction of Surfaces

EigenCrust outline

Spectral Theory & Practice

Practical (Partial) Diagonalization

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

MotivationSurfacesVoronoi / DelaunayThe Medial AxisVoronoi Poles

Outline

Reconstruction of SurfacesMotivationSurfacesVoronoi / DelaunayThe Medial AxisVoronoi Poles

EigenCrust outline

Spectral Theory & Practice

Practical (Partial) Diagonalization

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

MotivationSurfacesVoronoi / DelaunayThe Medial AxisVoronoi Poles

Motivation: Reconstruction

I Surface→ cloud of sample points→ watertight approximation

I Robust? Noise, outliers (laser scanner!), holes.

I Geom, top.

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

MotivationSurfacesVoronoi / DelaunayThe Medial AxisVoronoi Poles

The EigenCrust Algorithm

I Geometric heuristics

I Transcends local problems by taking a global view

I No holes even in the presence of noise and unsampled patches

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

MotivationSurfacesVoronoi / DelaunayThe Medial AxisVoronoi Poles

What is a Surface?

I Codimension 1 submanifold of ambient space

I No intersections, no boundary, manifold

I Surface = boundary of a volume.

I Search for manifold → automatically watertight!

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

MotivationSurfacesVoronoi / DelaunayThe Medial AxisVoronoi Poles

Voronoi / Delaunay (1)

I Voronoi cell

I Starting point: Spatial closeness

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

MotivationSurfacesVoronoi / DelaunayThe Medial AxisVoronoi Poles

Voronoi / Delaunay (2)

I Delaunay duals Voronoi.

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

MotivationSurfacesVoronoi / DelaunayThe Medial AxisVoronoi Poles

Starting Point: Delaunay Contains Surface

I Triangulation contains surface approximation → good startingpoint

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

MotivationSurfacesVoronoi / DelaunayThe Medial AxisVoronoi Poles

Starting Point: Space partitioning

I Triangulation partitions space

I Label the tetrahedra → inside and outside

I Surface = boundary inside|outside.

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

MotivationSurfacesVoronoi / DelaunayThe Medial AxisVoronoi Poles

Skeleton

I Medial axis ≈ skeleton

I Deforms to surface’s ambient complement

I (homotopy & homeomorphism!)

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

MotivationSurfacesVoronoi / DelaunayThe Medial AxisVoronoi Poles

Voronoi Poles

I Denser sampling → elongated cells

I Pole p+ = furthest vertex of cell

I Pole p−: only if angle > π2

I Convergence to Medial Axis in 2D

I In 3D, “Surface” tetrahedra occur

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

MotivationSurfacesVoronoi / DelaunayThe Medial AxisVoronoi Poles

Poles ↔ Skeleton

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

The Combinatorial ApproachEigenCrust (1)EigenCrust (2)EigenCrust (3)

Outline

Reconstruction of Surfaces

EigenCrust outlineThe Combinatorial ApproachEigenCrust (1)EigenCrust (2)EigenCrust (3)

Spectral Theory & Practice

Practical (Partial) Diagonalization

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

The Combinatorial ApproachEigenCrust (1)EigenCrust (2)EigenCrust (3)

I Delaunay triangulation is a combinatorial object (graph)

I So is its dual

I Good for algorithms!

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

The Combinatorial ApproachEigenCrust (1)EigenCrust (2)EigenCrust (3)

EigenCrust proper

I Augment point cloud with bounding box

I Form pole graph (V ,E ,w):

I Poles belonging to a single vertex

I Poles of delaunay-neighboring vertices

I Edge weights: Geometrical Heuristic (sorry).

I Partition the pole graph

I Unlabel suspicious tetrahedra and re-partition.

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

The Combinatorial ApproachEigenCrust (1)EigenCrust (2)EigenCrust (3)

EigenCrust (2)

I True MAT goes off into infinity → bounding box

I Authors use negative weights to great effect

I Weight: −e4+4 cos φ – e4−4 cos φ

I (unproven) justification: “Angle between circumspheres”

P

A1

r1

A2

r2

α

delaunay circumcircles

d

α

β

β

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

The Combinatorial ApproachEigenCrust (1)EigenCrust (2)EigenCrust (3)

EigenCrust (212)

P

A1

r1

A2

r2

α

delaunay circumcircles

d

α

β

β

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

The Combinatorial ApproachEigenCrust (1)EigenCrust (2)EigenCrust (3)

EigenCrust (3)

I A priori OUTSIDE / INSIDE supernodes.

I Second step for non-poles / ambiguous.

I Next: a comparison, made by the authors

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

LaplaciansEigenmodes: Hearing + Seeing = BelievingDiscretizationGraph Vectorspaces for Space Partitioning

Outline

Reconstruction of Surfaces

EigenCrust outline

Spectral Theory & PracticeLaplaciansEigenmodes: Hearing + Seeing = BelievingDiscretizationGraph Vectorspaces for Space Partitioning

Practical (Partial) Diagonalization

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

LaplaciansEigenmodes: Hearing + Seeing = BelievingDiscretizationGraph Vectorspaces for Space Partitioning

Before we proceed ...

We are going to need some seemingly unrelated stuff.Please bear with me.

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

LaplaciansEigenmodes: Hearing + Seeing = BelievingDiscretizationGraph Vectorspaces for Space Partitioning

Finite-Dimensional Vector Spaces

I Recall the vector space axioms

I Linear transformation

I Basis

I Matrix

I Square matrix

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

LaplaciansEigenmodes: Hearing + Seeing = BelievingDiscretizationGraph Vectorspaces for Space Partitioning

We are talking ... Hilbert Spaces!

I Inner product: distances, angles

I f · g =∫ 10 f (x)g(x)dx

I Importance of linear operators

I Importance of hermitean operators

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

LaplaciansEigenmodes: Hearing + Seeing = BelievingDiscretizationGraph Vectorspaces for Space Partitioning

Operators

I Laplacian on Rn as second derivative vector

I It frequently appears in physics

I It is a linear operator.

I You already know its eigenvectors!

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

LaplaciansEigenmodes: Hearing + Seeing = BelievingDiscretizationGraph Vectorspaces for Space Partitioning

Harmonics

I Eigenfunctions of the Laplacian = Harmonics

I Harmonic Analysis is often a good idea

I Depends on domain

I Demo!

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

LaplaciansEigenmodes: Hearing + Seeing = BelievingDiscretizationGraph Vectorspaces for Space Partitioning

Natural Modes of Vibration

I Consider some solid object

I Tap it, it sounds

I You are hearing its spectrum!

I Normal Mode ↔ Eigenvalue ↔ Frequency ↔ Energy (Why?)

I Can even be made visible

I Degeneracies

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

LaplaciansEigenmodes: Hearing + Seeing = BelievingDiscretizationGraph Vectorspaces for Space Partitioning

Harmonics & Eigenmodes

I Vibrations: Boundary value problem; but also ...I finite modelI Resonances

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

LaplaciansEigenmodes: Hearing + Seeing = BelievingDiscretizationGraph Vectorspaces for Space Partitioning

Rn doesn’t fit in my computer!

I Basic finite difference approximation

I Square grid

I Convergence

I generalizes to arbitrary grids & graphs

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

LaplaciansEigenmodes: Hearing + Seeing = BelievingDiscretizationGraph Vectorspaces for Space Partitioning

Self-Adjointness or Why the Spectrum is Real

I A desirable property: 〈Ax , y〉 = 〈x ,Ay〉I Corresponds to symmetric matrix

I Real spectrum and orthogonal set of eigenvectors.

I Find A = UΛU∗ (U rotation). Often miraculous!

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

LaplaciansEigenmodes: Hearing + Seeing = BelievingDiscretizationGraph Vectorspaces for Space Partitioning

Introducing Normalized Cuts

I Flexible formalism

I Segmentation by graph cuts

I Good, globally consistent solution

I Graph Theory ↔ Linear Algebra

I Combinatorics ↔ Numeric Methods

I Weighted, undirected graphs.

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

LaplaciansEigenmodes: Hearing + Seeing = BelievingDiscretizationGraph Vectorspaces for Space Partitioning

Combinatorial Laplacian / Graph Matrices

I Combinatorial Laplacian

I Affinity (generalized adjacency) matrix

Aij =

{wij if (i , j) ∈ E0 else

I Degree matrix D, diagonal Dii = degree of vertex i

I Graph Laplacian L = D − A

I Degree-normalized: W = D− 12 LD− 1

2 (transform vectors asneeded)

I W remains sparse.

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

LaplaciansEigenmodes: Hearing + Seeing = BelievingDiscretizationGraph Vectorspaces for Space Partitioning

Outline of the NCuts Algorithm

I Construct a graph with weighted edges.

I Connectivity and Weights = adapt to model

I Partition along nodal sets

I Corresponding to λ2

I (lowest is trivial)

I Object splits naturally – tightly connected parts vibratetogether

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

Lanczos IterationThe Wider PerspectiveOpen Questions

Outline

Reconstruction of Surfaces

EigenCrust outline

Spectral Theory & Practice

Practical (Partial) DiagonalizationLanczos IterationThe Wider Perspective: Other Interesting Uses of RelatedTechniquesOpen Questions

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

Lanczos IterationThe Wider PerspectiveOpen Questions

Sparsely connected graphs → sparse matrices

I Small eigenvalue problems can be solved by direct methods(matrix factorizations)

I Prohibitive for large problems.

I Sparse matrices are made of zeroes ... mainly

I Matrix-Vector multiplication tends to be inexpensive

I Iterative methods very welcome.

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

Lanczos IterationThe Wider PerspectiveOpen Questions

Selective calculation of eigenvectors

I Calculating eigenpairs in O(n) time per iteration

I Typical number of iterations O(√

n)

I But varies according to eigenstructure

I Positive definite; xT AxxT x

I Get lowest first

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

Lanczos IterationThe Wider PerspectiveOpen Questions

More Applications

I Simulation (physics)

I Data Clustering: importance-weighted criterion

I / Text Mining

I Transductive Learning (global view)

I ...

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

Lanczos IterationThe Wider PerspectiveOpen Questions

Questions for you

I Proof of properties (reconstruction quality)?

I Incremental computations?

I Sharp corners → hybrid

I ...

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

References I

Amenta, N., Choi, S., Dey, T. K., & Leekha, N. (2000). A simplealgorithm for homeomorphic surface reconstruction. InInternational journal of computational geometry andapplications (pp. 213–222).

Amenta, N., Choi, S., & Kolluri, R. K. (2001). The power crust,unions of balls, and the medial axis transform.Computational Geometry: Theory and Applications, 19,127–153.

Choi, H. I., Choi, S. W., & Moon, H. P. (1997). Mathematicaltheory of medial axis transform. Pacific Journal ofMathematics, 181, 57–88.

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

References II

Fowlkes, C., Belongie, S., Chung, F., & Malik, J. (2004). Spectralgrouping using the nystrom method. IEEE Transactions onPattern Analysis and Machine Intelligence, 26, 214–225.

Kac, M. (1966). Can you hear the shape of a drum. Amer. Math.Monthly, 73(1).

Rahimi, A., & Recht, B. (2004). Clustering with normalized cuts isclustering with a hyperplane. Statistical Learning inComputer Vision.

Shi, J., Belongie, S., Leung, T. K., & Malik, J. (1998). Image andvideo segmentation: The normalized cut framework. In Icip(1) (p. 943-947).

Cgal, Computational Geometry Algorithms Library. (n.d.).(http://www.cgal.org)

Nils Erik Flick Spectral Surface Reconstruction

Surface ReconstructionEigenCrust outline

Spectral Theory & PracticePractical (Partial) Diagonalization

References

References III

Ietl, the Iterative Eigensolver Template Library. (n.d.).(http://www.comp-phys.org/software/ietl/)

Wardetzky, M., Mathur, S., Kalberer, F., & Grinspun, E. (2007).Discrete laplace operators: no free lunch.

Zhou, D., & Scholkopf, B. (2005). Regularization on DiscreteSpaces. LECTURE NOTES IN COMPUTER SCIENCE,3663, 361.

Nils Erik Flick Spectral Surface Reconstruction

seppke
Textfeld
Ravikrishna Kolluri, Jonathan Richard Shewchuk, and James F. O'Brien, Spectral Surface Reconstruction from Noisy Point Clouds, Symposium on Geometry Processing 2004 (Nice, France), pages 11-21,Eurographics Association, July 2004.
seppke
Notiz
Accepted festgelegt von seppke
seppke
Notiz
Completed festgelegt von seppke
seppke
Notiz
MigrationConfirmed festgelegt von seppke

top related