noiseless, high frame rate (> khz), photon counting arrays for use in the optical to extreme uv

Post on 03-Jan-2016

26 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

Noiseless, high frame rate (> kHz), photon counting arrays for use in the optical to extreme UV. John Vallerga, Jason McPhate, Anton Tremsin and Oswald Siegmund Space Sciences Laboratory, University of California, Berkeley Bettina Mikulec and Allan Clark University of Geneva. - PowerPoint PPT Presentation

TRANSCRIPT

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

John Vallerga, Jason McPhate, Anton Tremsin and Oswald Siegmund

Space Sciences Laboratory, University of California, Berkeley

Bettina Mikulec and Allan Clark

University of Geneva

Noiseless, high frame rate (> kHz), photon counting arrays for use in the optical to

extreme UV

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Future WFS detector requirements

• High optical QE for fainter guide stars

• Lots of pixels - eventually 512 x 512– More accuators

– More complex LGS images (parallax, gated, etc)

– Off null / open loop operation

• Very low (or zero!) readout noise

• kHz frame rates

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Photon Counting

QADC

V v

EventsEvents

Charge integrating

Threshold

EventsCount(x,y,t)

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Centroid in presence of noise:

8 x 8Noiseless35% QE

10 photons

- - -

100 photons

1000 photons

8 x 82.5 e- rms90% QE

6 x 62.5 e- rms90% QE

4 x 42.5 e- rms90% QE

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Centroid error vs. input fluence

Centroid estimator error vs. technique

0.100

1.000

10.000

100.000

1 10 100 1000

Input number of photons

Centroid Error (rms, radians)

CCD Quad cellCCD 8x8 weightedCCD 6x6 weightedMedipix 8x8 weighted

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Imaging, Photon Counting DetectorsCharge distribution on stripsCharge CloudMCP stackTube Window withphotocathodeγ

Photocathode converts photon to electron

MCP(s) amplify electron by 104 to 108

Rear field accelerates electrons to anode

Patterned anode measures charge centroid

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Bandpass by photocathode selection

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800

Wavelength (nm)

Quantum Efficiency

CsIGaNBialkalaiGaAsP

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

MCP Detectors at SSL Berkeley COS FUV for Hubble (200 x 10 mm windowless)

25 mm Optical Tube

GALEX 68 mm NUV Tube (in orbit)

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Wavefront Sensor Event Rates

• 5000 centroids

• Kilohertz feedback rates (atmospheric timescale)

• 1000 detected events per spot for sub-pixel centroiding

5000 x 1000 x 1000 = 5 Gigahertz counting rate!

• Requires integrating detector

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Our AO detector concept

An optical imaging tube using:

0

10

20

30

40

50

60

200 400 600 800 1000

Bialkali (Hamamatsu)

Extended S25 (Hamamatsu)

Extended S25 (Photonis)

GaAs (ITT)

Quantum Efficiency (%)

Wavelength (nm)

• GaAs photocathode

• MCPs to amplify to ~104

• Medipix2 ASIC readout

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Medipix2 ASIC Readout

Each pixel has amp, discriminator, gate & counter.

256 x 256 with 55 µm pixels (buttable to 512 x 512).

Counts integrated at pixel. No charge transfer!

Developed at CERN for Medipix collaboration (xray)

Input

Preamp

Disc.

Disc. logic Mux. 13 bit

counter –ShiftRegister

Clock out

Shutter

Lower Thresh.

Disc.

Mux.

Previous Pixel

Mask bit

Analog Digital

Upper Thresh.

Next Pixel

Mask bit

Polarity

~ 500 transistors/pixel

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

First test detector• Demountable detector

• Simple lab vacuum, no photocathode

• Windowless – UV sensitive

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

UV photon counting movie

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Sub-pixel spatial linearity

LampPinhole

Detector

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Imaged pinhole array

Pinhole grid mask

(0.5 x 0.5 mm)

Gain: 20,000

Rear Field: 1600V

Threshold: 3 ke-

Gap: 500µm

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Avg. movement of 700 spots

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0 5 10 15 20 25

Lamp Position (mm)

Centroid Position (µm)

Delta X

Delta Y

1 pixel

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Position error (550 events/spot)

0

5

10

15

20

25

30

35

40

45

50

-20 -15 -10 -5 0 5 10 15 20

Centroid difference (microns)

Number of centroids

rms = 2.0 µm

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Vacuum Tube Design

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Vacuum Tube Design

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Vacuum Tube Design

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Vacuum Tube Design

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Medipix on a Header

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Summary

• Noiseless detectors outperform CCDs at low fluence per frame

• Photocathode choice to fit application

• Medipix ASIC readout allows for a huge dynamic range, fast frame rate.

MCP/Medipix Status

• First tube in Fall 2005

• GaAs tube in 1st half of 2006

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Future Possibilities

• Medipix 3 now being discussed– 130 nm CMOS technology– Faster front end for less deadtime per pixel– Faster readout rate (10 kHz frame rate)– Radiation hard

• Si APDs rather than MCPs as photon converter/amplifier– Higher optical QE– Near IR response– Cooling will be required to reduce dark count rate

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Acknowledgements

• Univ. of Barcelona

• University of Cagliari

• CEA

• CERN

• University of Freiburg

• University of Glasgow

• Czech Academy of Sciences

• Mid-Sweden University

• University of Napoli

• NIKHEF

• University of Pisa

• University of Auvergne

• Medical Research Council

• Czech Technical University

• ESRF

• University of Erlangen-Nurnberg

Thanks to the Medipix Collaboration:

This work was funded by an AODP grant managed by NOAO and funded by NSF

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Flat Field

1200 cts/bin - 500Mcps

MCP deadspots

Hexagonal multifiber boundaries

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Flat Field (cont)

Histogram of Ratio consistent with counting

statistics (2% rms)Ratio Flat1/Flat2

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Readout Architecture33

28 b

it P

ixel

Col

umn

0

3328

bit

Pix

el C

olum

n 25

5

3328

bit

Pix

el C

olum

n 1

256 bit fast shift register

32 bit CMOS output LVDS out

• Pixel values are digital (13 bit)

• Bits are shifted into fast shift register

• Choice of serial or 32 bit parallel output

• Maximum designed bandwidth is 100MHz

• Corresponds to 266µs frame readout

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

3328

bit

Pix

el C

olum

n 0

3328

bit

Pix

el C

olum

n 25

5

3328

bit

Pix

el C

olum

n 1

256 bit fast shift register

32 bit CMOS output LVDS out

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

“Built-in” Electronic Shutter

• Enables/Disables counter

• Timing accuracy to 10 ns

• Uniform across Medipix

• Multiple cycles per frame

• No lifetime issues

• External input - can be phased to laser

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000

CsI 1985 vs 1999

CsI 1985 30°CsI 1985 20°CsI #3 2/99 20°CsI #3 2/99 30°CsI #2 1/99 20°CsI #2 1/99 30°

Wavelength (Å)

EUV and FUV (50 - 200 nm)

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

GaN UV Photocathodes, 100- 400 nmGaN UV Photocathodes, 100- 400 nm

0.1

1

10

100

150 200 250 300 350 400

NW-BH071#3

NW-BH071#2

NW-JG238#3

NW-JG238#2

Quantum Efficiency (%)

Wavelength (nm)

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

GaAsP Photocathodes

Hayashida et al. Beaune 2005 NIM

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Avalanche Photodiodes (APDs, Geiger mode)

•Single photon causes breakdown in over-voltaged diode

•QE potential of silicon

•Arrays in CMOS becoming available

But

•Appreciable deadtime

•Low filling factor•High dark counts, crosstalk and afterpulsing

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

APD arrays

Edoardo CharbonEcole Polytechnique Federale de Lausanne

32 x 32

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

L3CCD (e2V Technologies)

•Integrates charge

•Multiplies charge in special readout register

•Adjust gain such that e < 1e-

But

•Multiplication noise doubles photon noise variance

•Single readout limiting frame rate

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Assumed performance parameters

CCDMedipix-

MCP

Binning 2 x 2 6 x 6 8 x 8 8 x 8

QE (%) 90 90 90 35

Readout noise 2.5 e- 2.5 e- 2.5 e- 0

Seeing width (pxls FWHM) 0.75 2.25 3 3

Diffract. width (pxls FWHM) 0.5 1.5 2 2

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu€

(σ Δφ2 )ph =

π 2

2ln(2)(Nph )•NTND

⎝ ⎜

⎠ ⎟

2

•NT

2 + NW2

2NT2 + NW

2

⎝ ⎜

⎠ ⎟

2

(σ Δφ2 )det =

π 3

32(ln(2))2•σ det

(Nph )

⎝ ⎜

⎠ ⎟

2

•NT

2 + NW2

ND

⎝ ⎜

⎠ ⎟

2

(σ Δφ2 )tot = (σ Δφ

2 )det +(σ Δφ2 )ph

Gaussian weighted center of gravity algorithm:

From Fusco et al SPIE 5490. 1155, 2004

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Advantages of multi-pixel sampling of Shack-Hartmann spots

Non-linearity of 2 x 2 binning

Quad cell (2x2) algorithm for Gaussian input

-1

0

1

-1 0 1 Centroid true position

Calculated position

Sigma = 0.2

Sigma = 0.4

Sigma = 0.6

Sigma = 0.8

Sigma = 1.0

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Advantages of multi-pixel sampling of Shack-Hartmann spots

Linear response off-nullInsensitive to input widthMore sensitive to readout noise

4 x 4 6 x 64x4 COG non-linearity for Gaussian input

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Centroid true position

Calculated position(center of gravity )

Sigma = 0.4Sigma = 0.8Sigma = 1.2

6x6 COG non-linearity for Gaussian input

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Centroid true position

Calculated position(center of gravity)

Sigma = 0.4Sigma = 0.8Sigma = 1.2

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Technology advantage

High QE CCDs

Number of pixels CCDs, Medipix

Readout noise APD, Medipix, L3CCD

Frame rate Medipix, CCD

Gating Medipix

AMOS 2005 - Maui - J. Vallerga - jvv@ssl.berkeley.edu

Soft X-Ray Photocathodes

0

20

40

60

80

100

0.1 1

CsBr

KI

Energy (keV)

top related