nuclear physics activities in lithuania - c.ymcdn.comc.ymcdn.com/sites/ physics activities in...

Post on 10-Jun-2018

223 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Nuclear physics activities in Lithuania

Arturas PlukisInstitute of Physics,

Savanoriu pr. 231, Vilnius, 02300Lithuania

www.fi.lt

Institute of Theoretical Physics and Astronomy

• Department of Theory of Nucleus has been established in 1973 by V. Vanagas.

• Investigate the light nucleus as quantum Skyrme model solitons

• Calculations of deuteron and helium form factors

• neutrino interactions with nuclei as well as electron-capture rates in the supernova environment

Institute of Theoretical Physics and Astronomy

• collaboration with K.Langanke,G.Martinez-Pinedo (both GSI,Germany), and W.R.Hix (ORNL, USA)

• collaboration with F.Nowacki (IReS, France) and G.Martinez-Pinedo

Vytautas Magnus university, Kaunas

• Techniques for microscopic nuclear theory development

• Modification of the nucleon-nucleon interaction because of surrounded“spectator” nucleons

A. Plukis, Oct 17, 2008, Vilnius

Institute of PhysicsNuclear and environmental radioactivity

research laboratory

• 40 Employees– 20 with doctor or hab. doctor degree– 8 PhD students

• Radiochemical laboratory• Nuclear spectroscopy facilities• “Tandetron” ion accelerator• Ignalina Radioecological Monitoring

Station

A. Plukis, Oct 17, 2008, Vilnius

Nuclear theory group

• Ab initio microscopic nuclear structureinvestigations for light nuclei:harmonic oscillatorbasis, translationaly invariant and antisymmetricwave function, realistic nuclear Nucleon-Nucleoninteraction (Reid, Argonne, Nijmegen)

• Parallel code, MPI and FORTRAN• Participation in LitGRID distributed computing

network• Collaboration with Arizona university (prof. B.

Barrett), Vytautas Magnus university

A. Plukis, Oct 17, 2008, Vilnius

Experimental nuclear spectroscopy

• Activity started by prof. K.Makariūnas

• Influence of chemical environment on radioactive decay (electron capture, internal conversion) rate.

• Hyperfine interactions (PAC, Mössbauer spectroscopy)

• Applied nuclear physics

A. Plukis, Oct 17, 2008, Vilnius

57Co decay rate variations

Compound CoS CoCl2 Co Co(Pd) CoSO4

(Δλ/λ)⋅104 -2.9 ± 0.4 -1.1 ± 0.4 0.0 ± 1.1 2.0 ± 1.1 5.6 ± 1.2

57Co EC Δλ/λ values compared to Co metal

A. Plukis, Oct 17, 2008, Vilnius

Measurement of electron density chemical changes on In nucleus by ΔΙγ/Ιγ method

A. Plukis, Oct 17, 2008, Vilnius

Calibration of 127I ir 129I Mossbauer isomer shift by 125I decay

rate variations (Δλ/λ)

Juodis L., Plukis A., Remeikis V., and Makariūnas K.,EPL 53 (3) , p. 283 (2001)

-8 -6 -4 -2 0 2 4 6 8

0.995

1.000

0.995

1.000

v, mm/s

A. Jagminas, K. Mažeika, J. Reklaitis, M.Kurtinaitienė, D. Baltrūnas: Template synthesis,characterization and transformations of ironnanowires while aging, Materials Chemistry andPhysics 109, (2008) 82-86.

Influence of annealing to Mössbauer spectra of Fe nanowires in AAO matrix

Mössbauer spectrometer with closed cyclehelium cryostat used for the studies ofbiomolecular objects, amorphous andsemiconductor, ferroelectric andnanocrystalline materials.

Mössbauer spectroscopy

Rayleigh scattered Mössbauer spectroscopy

0 10 20 30

0

500

1000

1500

2000

2500

3000

3500

4000

Research of macromolecule dynamics

-6 -4 -2 0 2 4 60,65

0,70

0,75

0,80

0,85

0,90

0,95

1,00

1,05

1,10

Rel

ativ

e in

tens

ity

velocity, mm/s

A. Plukis, Oct 17, 2008, Vilnius

Tandetron 4110A accelerator

H, C, Si, Fe ions from 2 to 5 MeVCurrents up to 2 particle μAPIXE, NRA, RBS analysis

A. Plukis, Oct 17, 2008, Vilnius

EU FP6 EurisolDS project

• European new generation RIB facility• Mostly participation in Task 5 “Safety and

Radioprotection”• Main target shielding calculations• Activation and radionuclide transport

evaluation• Spent target disposal and decomisioning

issues

A. Plukis, Oct 17, 2008, Vilnius

Neutron flux in Eurisol multi MW target

With CEA and PNPI

EPJ A, v,32, 1 p.1 (2007)

A. Plukis, Oct 17, 2008, Vilnius

Nuclear energy related activities

• Expert support for VATESI, RATA, Ministry of Environment

• Irradiated nuclear fuel composition• Radioactive waste analysis• Monitoring of radionuclides in environment

A. Plukis, Oct 17, 2008, Vilnius

Code validation for RBMK SNF calculation

(fuel assembly 3D description)

2% enrichment 235U fuelinner and outer fuel pellet ringsvertically varying coolant density along

the fuel channel

6.86

m

0.75171.5D, D2

0.55343C, C2

0.33514.5B, B2

0.25686A, A2

ρ (H2O) g/cm3h, cm

Axial region

h

A. Plukis, Oct 17, 2008, Vilnius

RBMK nuclear fuel composition239Pu content in irradiated fuel

A. Plukis, Oct 17, 2008, Vilnius

CASTOR cask modelling with MCNP5(3D geometry description)

CASTOR container No.0067-14102 half-assemblies located at specified places of CASTOR cask using hexagonal lattice option

3.43

m4.

4m

A. Plukis, Oct 17, 2008, Vilnius

MCNP5 Gamma dose average is 39 Sv/hSCALE 4.3 average is 52 Sv/h experimental dose points are ~1.6 times above the MCNP5

result is rather good taking into account a) uncertainties of our model:

spent nuclear fuel composition, irradiation and cooling history, Co contents in the fuel cladding, etc.

b) possible surface contamination with fission products from the cooling poolc)TLD sensitivity to thermal neutronsd) SCALE 4.3 after ~10 years and our work after 13 years

Gamma dose rate at the CASTOR surface

A. Plukis, Oct 17, 2008, Vilnius

Generation IV reactors for transmutation (collaboration with CEA)

- Fuel - Erbium - Helium - Graphite

310μm

200μmCore contains : 1.87×1010 ÷ 3.18×1010 fuel particles

1.5×108 ÷ 3.4×109 burnable poison particles

3D GT-MHR geometry descriptioncompact and particle levels (R.Plukiene)

A. Plukis, Oct 17, 2008, Vilnius

239Pu burnup in GT-MHR:WG Pu - 73%PWR Pu - 82%RBMK Pu1 - 93%RBMK Pu3 - 90%

GT-MHR:WG Pu, PWR Pu and RBMK Pu1 fuel cases

(burnup)

Fusion – fission hybrid system simplified neutronic model (collaboration

with CEA Saclay and TSI Research)

Molten salt liquid wall

Fusion system

D + T= 4He + n ( 14MeV)

External neutron source(1MW ~ 4·1017 n/s )

Molten salt blanket with TRU(LiF-BeF2-(HN)F4)HN (Pu + MA)

fission capture

1 group cross sections for actinides

A. Plukis, Oct 17, 2008, Vilnius

Nuclear spectroscopy for materials identification

• Participation in nuclear smuggling ITWG– Pu Round-robin test

• Forensic analysis for illegal nuclear materials– Depleted uranium– RBMK and VVER fuel pellets

A. Plukis, Oct 17, 2008, Vilnius

Pu in SNFU in fresh nuclear fuel

A. Plukis, Oct 17, 2008, Vilnius

Scaling factors for Ignalina NPP radioactive waste

• Experimental and modeling determination of difficult-to-measure nuclides

– Very low level waste

– Liquid radioactive waste

– Bituminized waste

– Waste characterization for decomissioning activities

• Graphite waste characterization (FP7 “Carbonwaste” project)

A. Plukis, Oct 17, 2008, Vilnius

Difficult to measure nuclides in bitumenized Ignalina NPP waste

A. Plukis, Oct 17, 2008, Vilnius

SNF

Solid waste

Liquid waste

Future

• Old RBMK reactor will be decomissioned for some period Lithuania will be non nuclear country

• “A New Hope” - new reactor is planed– Studies reactor and neutron physics in Vilnius

University

– Great popularity among students

– Experimental labs are foreseen

A. Plukis, Oct 17, 2008, Vilnius

Thank You for attention

top related