on scales larger than few arcminutes, the millimeter sky is dominated by cmb temperature...

Post on 21-Dec-2015

223 Views

Category:

Documents

5 Downloads

Preview:

Click to see full reader

TRANSCRIPT

On scales larger than few arcminutes, the millimeter sky is dominated by CMB

temperature fluctuations.

A significant fraction of these CMB photons encode a wealth of information about its

interaction with the local matter distribution (eg lensing, SZ, ISW or Rees-Sciama

effects).

On smaller scales, the millimeter sky is dominated by high redshift star forming

galaxies (see talk by D.H.Hughes). All this provides a complementary tool to

optical/IR view of the universe

Simulations of the millimeter sky

Alpha meeting @ Durham May 21, 2004E.Gaztañaga

Institut d'Estudis Espacials de Catalunya, IEEC/CSIC

Alfredo Montana, Msc. Thesis @ INAOE

INAOE - Barcelona

Durham - Barcelona

(Alfa, RAS-CSIC, IBM Earth-Simulator)

How to get Dark Energy from the millimeter

sky:

- Modeling cosmological parameters with the acoustic peaks GTM?.

- Normalization of CMB fluctuations from recombination to today (sigma_8).

- Volume dV/dz: eg optical/spect follow-up (GTC) of SZ Cluster Surveys (GTM).

- CMB lensing/polarization surveys.

- Star formation history of the universe (GTM).

- Cross-correlating optical/IR objects with CMB fluctuations.

Miguel Aragon, Msc. Thesis @ INAOE

Alfredo Montana, Msc. Thesis @ INAOE

PRIMARY & SECONDARY ANISOTROPIES

Sachs-Wolfe (ApJ, 1967)

T/T(n) = [ 1/4 (n) + v.n + (n) ]if

Temp. F. = Photon-baryon fluid AP + Doppler + N.Potential (SW)

i

f

In EdS (linear regime) D(z) = a , and therfore dd

Not in dominated universe !

SZ- Inverse Compton Scattering -> Polarization

+ Integrated Sachs-Wolfe (ISW) & Rees-Sciama (Nature, 1968) non-linear

+ 2 ∫if d dd(n)

APM

SDSS

APM

WMAPAPM

APM

WMAP

WMAPAPM

WMAP

0.7 deg FWHM

0.7 deg FWHM

5.0 deg FWHM

5.0 deg FWHM

0.7 deg FWHM

0.7 deg FWHM

5.0 deg FWHM

5.0 deg FWHM

WMAPWMAP

SDSS SDSS

WMAPSDSS

WMAPSDSS

Significance (null detection):

SDSS high-z:

P= 0.3% for < 10 deg.

(P=1.4% for 4-10 deg)

SDSS all: P= 4.8%

Combined: P=0.1 - 0.03%

(3.3 - 3.6 sigma)

Pablo Fosalba, EG, F.Castander

(astro-ph/0307249)

= 0.69-0.87 ( 2-sigma)

ConclusionsP.Fosalba, EG, F.Castander (astro-ph/ 0305468/0307249)

1. WMAP team (Nolta et al., astro-ph/0305467) and Boughm & Crittenden (astro-ph/0305001). Radio Galaxies (NVSS) z=0.8-1.0

2. SDSS team (Scranton et al 0307335) z=0.3-0.5

3. 2dF (Myers etal 0306180, groups)

4. 2Mass (Afshordi et al 0308260) z=0.1

• bias from gal-gal correlation:

• Agree with z-evolution of ISW effect ( ~ 0.8)

• At smaller scales (1 deg) and low-z signal drops, indicating SZ.

• No foreground contamination: clean, W and V-bands.

• => = 0.69-0.87 ( 2-sigma) with SDSS+APM

0.77 < < 0.85 ( 2-sigma)

Simulating the mm sky

HOW?-Large area (>1000 sqr.deg.’s)

-Large scales (>1 Mpc)

- Back to high redshifts (z=1 => L=1000’s Mpc)

=> Hubble Volume Simulations

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

WHY?- Non-linear effects.

- Projection effects.

-SZ, lensing, sub-mm /dust in galaxies

Simulating mm sky

DM HV sim

Grav Pot.

CMB sim

Galxies.

Delta T.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

bias

Daniel Rosa-Gonzalez

Z=1.0 +/- 0.2

5x5 deg^2 proyection

dust cross

top related