parametric manifold models for validation; verification for...

Post on 10-Sep-2021

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Parametric Manifold Modelsfor Validation;

Verification forParametric Manifold Models

Anthony T PateraMassachusetts Institute of Technology

NRC Symposium on VVUQWashington, DC28 March 2012

Acknowledgements Collaborators

P Huynh* D Knezevic* M Dihlmann

J Eftang E Rønquist*

S Vallaghe K Urban

T Tonn

Also S Boyaval, A-L Gerner, M Grepl, B Haasdonk, J Hesthaven, KC Hoang,C Le Bris, T Leurent, GR Liu, Y Maday, C Nguyen, J Penn, A Quarteroni,G Rozza, K Steih, K Veroy, K Willcox, and M Yano.

NRC Symposium on VVUQ AT Patera 2

Acknowledgements Sponsors

AFOSR/Office of Secretary of Defense

Office of Naval Research

MIT-Singapore International Design Center

Deshpande Center for Technological Innovation

NRC Symposium on VVUQ AT Patera 3

Acknowledgements AFOSR/OSD MURI(F Fahroo)

Multi-Scale Fusion of Information UncertaintyQuantification and Management

in Large-Scale Simulations

Brown: K Karniadakis, J Hesthaven, B RozovskyCaltech: T HouCornell: N Zabaras

MIT: A Patera, K Willcox

NRC Symposium on VVUQ AT Patera 4

FrequentistValidation Framework

with“Exact”† Model

†Exact in the sense of verification, not validation.

NRC Symposium on VVUQ AT Patera 5

“Exact” Model

Given µ ∈ D ⊂ RP , µ: parameter P -vector

umodel( · ;µ) ∈ X(Ω) ,

for Ω a domain in Rd.

Note the field umodel(x;µ) may derive from aparametrized partial differential equation.†

†In an example we also consider time-dependent fields.

NRC Symposium on VVUQ AT Patera 6

Measurements of Physical System

Given measurement functionals,

`measi : X → R, 1 ≤ i ≤ m ,

assume experiments yield outputs

Y expi = `meas

i (uphy)︸ ︷︷ ︸Y

phyi

+ ε(ωi), 1 ≤ i ≤ m ,

for ε(ω) a zero-mean Gaussian process.

Note uphy(x) serves to “interpret” Y phyi .

NRC Symposium on VVUQ AT Patera 7

Validation Hypothesis

For given µ ∈ D, δ ≥ 0

H(µ):

For all µ′ ∈ Nδ(µ) ,

‖Y phy − Y model(µ′)‖ ≤ δ .

Here Y modeli (µ′) = `meas

i (umodel( · ;µ′)), 1 ≤ i ≤ m;Nδ(µ) a neighborhood in D about µ.

Note: H(µ) FALSE, ∀µ ∈ D ⇒ “unmodeled physics.”

NRC Symposium on VVUQ AT Patera 8

Statistical Test

For any µ ∈ D,

REJECT H(µ) vs. ACCEPT H(µ)

if and only if

Fε(Y exp, Y model(µ)) > Bδ(µ) ;

require PrErrorType I ≤ 1− γ.†

† H(µ) TRUE: PrREJECT H(µ) ≤ 1− γ.

NRC Symposium on VVUQ AT Patera 9

FrequentistValidation Framework

withApproximate Model

NRC Symposium on VVUQ AT Patera 10

Approximate Model

Given µ ∈ D ⊂ RP , µ: parameter P -vector

umodel( · ;µ) ∈ X(Ω) ⊂ X(Ω) ,

where u(µ) ≈ umodel(µ).

Introduce Y modeli (µ) = `meas

i (u( · ;µ)), 1 ≤ i ≤ m.

NRC Symposium on VVUQ AT Patera 11

Measurements of Physical System

Given measurement functionals,

`measi : X → R, 1 ≤ i ≤ m ,

assume experiments yield outputs

Y expi = `meas

i (uphy)︸ ︷︷ ︸Y

phyi

+ ε(ωi), 1 ≤ i ≤ m ,

for ε(ω) a zero-mean Gaussian process.

Note uphy(x) is an “interpretation” of Y phyi .

NRC Symposium on VVUQ AT Patera 12

Validation Hypothesis

For given µ ∈ D, δ ≥ 0

H(µ):

For all µ′ ∈ Nδ(µ) ,

‖Y phy − Y model(µ′)‖ ≤ δ .

Here Y modeli (µ′) = `meas

i (umodel( · ;µ′)), 1 ≤ i ≤ m;Nδ(µ) a neighborhood in D about µ.

Note: H(µ) FALSE, ∀µ ∈ D ⇒ “unmodeled physics.”

NRC Symposium on VVUQ AT Patera 13

Statistical Test

For any µ ∈ D,

REJECT H(µ) vs. ACCEPT H(µ)

if and only if

Fε(Y exp, Y model(µ)) > Bδ(µ)Verification

; (≥ Bδ(µ))

require PrErrorType I ≤ 1− γ.†

† H(µ) TRUE: PrREJECT H(µ) ≤ 1− γ.

NRC Symposium on VVUQ AT Patera 14

Statistical Test

For many µ ∈ D,

REJECT H(µ) vs. ACCEPT H(µ)

if and only if

Fε(Y exp, Y model(µ)) > Bδ(µ)Verification

; (≥ Bδ(µ))

require PrErrorType I ≤ 1− γ.†

† H(µ) TRUE: PrREJECT H(µ) ≤ 1− γ.

NRC Symposium on VVUQ AT Patera 15

Parametric Manifold Models

Approximation Space

NRC Symposium on VVUQ AT Patera 16

Parametric ManifoldMh

Introduce uh(µ) ∈ Xh ⊂ X: a highly accuratefinite element (FE) surrogate for umodel(µ).

. ..Greedy Samplingsnapshots

uuhh((˜µµ11))uuhh((˜µµ22))

uuhh((˜µµNN ))

XXhh

MMhh ≡≡ uuhh((µµ)) µµ ∈∈ DD

Approximation Space: XD = spanuh(µn), 1 ≤ n ≤ N.NRC Symposium on VVUQ AT Patera 17

Parametric Manifold Models

Approximation Space

Reduced Basis (RB)

NRC Symposium on VVUQ AT Patera 18

Galerkin Projection

Given weak form (parametrized PDE),

µ ∈ D → A(w, v;µ), ∀ w, v in X(Ω) ,†

uRB ∈ XD satisfies

A(uRB, v;µ) = 0, ∀ v ∈ XD .

Advantage: N = dim(XD) dim(Xh) .

†Note umodel(µ) ∈ X: A(umodel(µ), v;µ) = 0, ∀ v ∈ X;uh(µ) ∈ Xh: A(uh(µ), v;µ) = 0, ∀ v ∈ Xh.

NRC Symposium on VVUQ AT Patera 19

A Posteriori Error Estimation

For any µ ∈ D,

‖uRB(µ)− umodel(µ)‖X≤ ‖uRB(µ)− uh(µ)‖X + ‖uh(µ)− umodel(µ)‖X≈ ‖uRB(µ)− uh(µ)‖X ; OFFLINE-ONLINE

provide rigorous error bound

‖uRB(µ)− uh(µ)‖ ≤ ∆hRB(µ) ,

where ∆hRB(µ) ≡ Ch

stability(µ) ‖A(uRB, · ;µ)‖(Xh)′ .

NRC Symposium on VVUQ AT Patera 20

OFFLINE-ONLINE Computational Strategy

OFFLINE Construct XD (once): expensive.

ONLINE Evaluate µ→ uRB, ∆hRB: inexpensive.

In the many-query (or real-time) context, amortizeOFFLINE effort over many ONLINE evaluations.

Note: ONLINE cost independent of dim(Xh),hence choose Xh conservatively rich.

NRC Symposium on VVUQ AT Patera 21

Parametric Manifold Models

Approximation Space

Reduced Basis (RB)

Empirical Interpolation (EI)

NRC Symposium on VVUQ AT Patera 22

Collocation

OFFLINE: Given XD, identifyquasi optimal interpolation points xk;associated characteristic functions Vk ∈ XD;

for 1 ≤ k ≤ N .

ONLINE: For µ ∈ D, form uEI(µ) ∈ XD as

uEI(x;µ) =N∑k=1

uh(xk;µ)Vk(x) .†

Advantage: Ω ⊂ Rd replaced by xkk=1,...,N .

†In practice, EI applied to functions of approximations of uh(µ).

NRC Symposium on VVUQ AT Patera 23

Parameter Manifold Models

Approximation Space

Reduced Basis (RB)

Empirical Interpolation (EI)

Dirty Laundry

NRC Symposium on VVUQ AT Patera 24

Issues

Difficulty Palliative

Stability Constant, Chstability Successive Constraint

P 1: µ ∈ D ⊂ RP Domain Decomposition in Ω

D Large: µ ∈ D ⊂ RP Domain Decomposition in D

Nonpolynomial Nonlinearity Empirical Interpolation

Long-Time Integration Space-Time Inf-Sup

NRC Symposium on VVUQ AT Patera 25

Numerical Example

NRC Symposium on VVUQ AT Patera 26

Cast of Characters

“Exact” Model:

(µ1, µ2) ∈ D → umodel(t, x;µ) ∈ X

FE Surrogate: dim(Xh) ≈ 3,000

(µ1, µ2) ∈ D → uh(t, x;µ) ∈ Xh

RB Approximate Model: dim(XD) ≤ 40 †

(µ1, µ2) ∈ D → uRB(t, x;µ) ∈ XD, ∆hRB(t, µ)

Physical System: uphy(t, x)

†RB 100× faster (ONLINE) than FE.

NRC Symposium on VVUQ AT Patera 27

Case I: Model

1100

1100

ΩΩ

ΓΓinin

zero

flux

zero

flux

ΓΓ00

ΓΓ∞∞

ΩΩmeme

00.5.500.5.5

ΩΩ11µµ11 ΩΩ00

µµ00 == 11ΩΩ22µµ22

∂∂uummoodeldel

∂∂nn== 11

YY momodedellii ((µµ)) ==

11

——ΩΩmeme —— ΩΩmeme

uumomodedell((ttii,, xx;;µµ)) ddxx

∂∂uummoodeldel

∂∂tt−−∇∇ ·· ((µµkk∇∇uumomodeldel)) == 00 in ΩΩkk

Parametrization: µ ≡ (µ1, µ2) ∈ [0.2, 5]2 ≡ D.

NRC Symposium on VVUQ AT Patera 28

Case I: Physical System(fully modeled physics)

1100

1100

ΩΩ

ΓΓininze

ro fl

uxze

ro fl

ux

ΓΓ00

ΓΓ∞∞ΩΩmeme

00.5.500.5.5

ΩΩ11ΩΩ00ΩΩ22

∂∂uuphphyy

∂∂nn== 11

αα11 == 44αα22 == 11 αα00 == 11

∂∂uuphphyy

∂∂tt−−∇∇ ·· ((ααkk∇∇uuphphyy)) == 00 inin ΩΩkk

YY expexpii ==

11

——ΩΩmmee —— ΩΩmeme

uuphphyy((ttii,, xx)) ddxx

++ ((ttii;;ωωii))unknown

Gaussian process

uphy(t, x) = umodel(t, x;µ∗ ≡ (4, 1)(α1,α2)

) †.†In practice, umodel(t, x;µ∗) replaced by uh(t, x;µ∗).

NRC Symposium on VVUQ AT Patera 29

Case I: Validation(noise: ≈ 1%, uncorrelated)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50.51

1.52

2.53

3.54

4.55

µµ∗∗

µµ11

µµ22

PrPr REJECT HH ((µµ∗∗ ≤≤ 00..0505))reject HH when HH is true

REJECT

ACCEPT

NRC Symposium on VVUQ AT Patera 30

Case I: Effort

Experiment (synthetic):

m = 10 repeats× 100 measurements in time

= 1,000 data in total.

Computation: 10,000 ONLINE evaluations

µ→ Y model(µ), ∆hRB(µ), Bδ(µ)

⇒ ACCEPT or REJECT H(µ).

NRC Symposium on VVUQ AT Patera 31

Case II: Model

1100

1100

ΩΩ

ΓΓinin

zero

flux

zero

flux

ΓΓ00

ΓΓ∞∞

ΩΩmeme

00.5.500.5.5

ΩΩ11µµ11 ΩΩ00

µµ00 == 11ΩΩ22µµ22

∂∂uummoodeldel

∂∂nn== 11

YY momodedellii ((µµ)) ==

11

——ΩΩmeme —— ΩΩmeme

uumomodedell((ttii,, xx;;µµ)) ddxx

∂∂uummoodeldel

∂∂tt−−∇∇ ·· ((µµkk∇∇uumomodeldel)) == 00 in ΩΩkk

Parametrization: µ ≡ (µ1, µ2) ∈ [0.2, 5]2 ≡ D.

NRC Symposium on VVUQ AT Patera 32

Case II: Physical System(unmodeled physics: crack)

1100

1100

ΩΩ

ΓΓinin

zero

flux

zero

flux

ΓΓ00

ΓΓ∞∞

ΩΩmeme

00.5.500.5.5

ΩΩ11ΩΩ00ΩΩ22

∂∂uuphphyy

∂∂nn== 11

αα11 == 44αα22 == 11 αα00 == 11

∂∂uuphphyy

∂∂tt−−∇∇ ·· ((ααkk∇∇uuphphyy)) == 00 inin ΩΩkk

YY expexpii ==

11

——ΩΩmmee —— ΩΩmeme

uuphphyy((ttii,, xx)) ddxx

++ ((ttii;;ωωii))unknown

Gaussian process

ΓΓcracracckk

uphy(t, x) 6= umodel(t, x;µ) for any µ ∈ D.NRC Symposium on VVUQ AT Patera 33

Case II: Validation(noise: ≈ 1%, uncorrelated)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.51

1.52

2.53

3.54

4.55

µµ11

µµ22

REJECT

ACCEPT

µµ∗∗“ ”

Crack Length = 1: crack conflated withlower conductivity medium.

NRC Symposium on VVUQ AT Patera 34

Case II: Validation(noise: ≈ 1%, uncorrelated)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.51

1.52

2.53

3.54

4.55

REJECT

µµ∗∗“ ”

µµ11

µµ22

Crack Length = 1.5: unmodeled physics detected.

NRC Symposium on VVUQ AT Patera 35

AFOSR/OSD MURI

Multi-Scale Fusion of Information UncertaintyQuantification and Management

in Large-Scale Simulations

Brown: K Karniadakis, J Hesthaven, B RozovskyCaltech: T HouCornell: N Zabaras

MIT: A Patera, K Willcox

NRC Symposium on VVUQ AT Patera 36

MURI Architecture

while (model insufficient)

propose/update model: µPDE, SPDE;

develop Reduced Order Model (ROM);ISOMAP, ANOVA, RB/EI, MEPC, . . .

verify ROM;

validate model⇐ Fε (data, ROM);

end

design under uncertainty⇐ ACCEPTED H(µ);

NRC Symposium on VVUQ AT Patera 37

MURI Domains & Applications

Thermofluids

Acoustics (for Noise Mitigation . . . )

Electromagnetics (for Stealth . . . )

(Multiscale) Materials

NRC Symposium on VVUQ AT Patera 38

References

NRC Symposium on VVUQ AT Patera 39

Frequentist Validation

V Chew, Confidence, prediction, and tolerance regions for the multivariatenormal distribution. J Am Stat Ass 61(315): 605–617, 1966.

O Balci, R Sargent, Validation of simulation models via simultaneousconfidence intervals. Am J Math Manage Sci 4: 375–406, 1984.

J McFarland, S Mahadevan, Multivariate significance testing and modelcalibration under uncertainty. Comput Methods Appl Mech Engrg 197(29– 32):2467–2479, 2008.

DBP Huynh, DJ Knezevic, AT Patera, Certified reduced basis model validation:A frequentistic uncertainty framework. Comput Methods Appl Mech Engrg201–204:13–24, 2012.

NRC Symposium on VVUQ AT Patera 40

Parametric Manifold Models

AK Noor, Recent advances in reduction methods for nonlinear problems.Comput Struct 13:31–44, 1981.

BO Almroth, P Stern, FA Brogan, Automatic choice of global shape functions instructural analysis. AIAA J 16:525–528, 1978.

TA Porsching, Estimation of the error in the reduced basis method solution ofnonlinear equations. Math Comput 45(172):487–496, 1985.

L Machiels, Y Maday, IB Oliveira, AT Patera, DV Rovas, Output Bounds forReduced-Basis Approximations of Symmetric Positive Definite EigenvalueProblems. CR Acad Sci Paris Series I 331:153–158, 2000.

G Rozza, DBP Huynh, AT Patera, Reduced Basis Approximation and APosteriori Error Estimation for Affinely Parametrized Elliptic Coercive PartialDifferential Equations — Application to Transport and Continuum Mechanics.Arch Comput Methods Eng 15(3):229–275, 2008.

M Barrault, Y Maday, NC Nguyen, AT Patera, An ‘Empirical Interpolation’Method: Application to Efficient Reduced-Basis Discretization of PartialDifferential Equations. CR Acad Sci Paris Series I 339:667–672, 2004.

NRC Symposium on VVUQ AT Patera 41

ATP Research Group:

augustine.mit.edu

AFOSR/OSD/MURI:

www.dam.brown.edu/AFOSR MURI 2009.htm

NRC Symposium on VVUQ AT Patera 42

top related