parte 2 - arquitetura de gpu´s referência gpu gems: programming techniques, tips, and tricks for...

Post on 17-Apr-2015

105 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Parte 2 - Arquitetura de GPU´s

referência

GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time GraphicsRandima Fernando

referência

GPU Gems 2 : Programming Techniques for High-Performance Graphics and General-Purpose Computation Matt Pharr, Randima Fernando

a. Arquitetura de Hardware

InterfaceCPU - GPU

CPU

InterfaceGPU - Video

Enginede

Geometria

Engines de Rasterização

FrontBuffer

BackBuffers

ZBuffer

StencilBuffer

Texture Buffer

Memória

de

vídeo

Processador(es)

Back Buffer

Front Buffer

Arquitetura de GPUs

Arquitetura de GPUs

Arquitetura de GPUs

b. Programação de GPUs

NVídia FX Composer ATI Rendermonkey

- Linguagens: Cg, HLSL, OpenGL Shader Language- Ambientes de Desenvolvimento

Programação de GPUs

Tipos de Variáveis

- int, float, bool, struct, in, out, string

- vetores: float2, float3, float4Float4 cor;Vermelho = cor[0];Vermelho = cor.r;Vermelho = cor.x;

Float2 parte = cor.xy; (swizzling)Float2 parte = {cor[0], cor[1]};

Matrizes

-floatLxC: float3x4, float4x4...-Matrix <float, 4, 4> Matriz2;

-Floar4x4 matriz1;-Float b = matriz1.m11;-Float c = matriz1[0][1];

Funções Intrínsecas

Abs (a), acos(x), all(x) [todos os componentes são não zero], any(x), asin(x), atan(x), atan2(y,x), ceil(x), clamp(x, min, max), clip(x), cos(x), cosh(x), cross(a, b), D3DCOLORtoUBYTE4(x), ddx(x), ddy(x), degree(x), determinant(m), distance(a,b), dot(a, b), exp(x), exp2(value a), faceforward(n, i, ng), floor(x), fmod(a, b), frac(x), frexp(x, out exp), fwidth(x), isfinite(x), isinf(x), isnan(x), idexp(x, exp), length(v), lerp(a, b, s), lit(n.l, n.h, m), log(x), log10(x), log2(x), max(a, b), min(a, b), modf(x, out ip), mul (a, B), noise(x), normalize(v), pow(x, y), radians(x), reflect(i, n), refract(i, n, R), round(x), rsqrt(x), saturate(x), sign(x), sin(x), sincos(x, out s, out c), sinh(x), smoothstep(min, max, x), value sqrt(value a), step(a, x), tan(x), tanh(x), tex1D(s, t), tex1D(s, t, ddx, ddy), tex1Dbias(s, t), tex1Dgrad(s, t, ddx, ddy), tex1Dlod(s, t), tex1Dproj(s, t), tex2D(s, t), tex2D(s, t, ddx, ddy), tex2Dbias(s, t), tex2Dgrad(s, t, ddx, ddy), tex2Dlod(s, t), tex2Dproj(s, t), tex3D(s, t), tex3D(s, t, ddx, ddy), tex3Dbias(s, t), tex3Dgrad(s, t, ddx, ddy), tex3Dlod(s, t), tex3Dproj(s, t), texCUBE(s, t), texCUBE(s, t, ddx, ddy), texCUBEbias(s, t), texCUBEgrad(s, t, ddx, ddy), texCUBElod(s, t), texCUBEproj(s, t), transpose(m)

Loops e Condicionais

If, While, do, for ...

c. Vertex Programming

Operações nesta etapa:- Transformação da posição do vértice- Geração de coordenadas de textura para a posição do vértice- Iluminação sobre o vértice- Operações para determinar o material a ser aplicado ao vértice

Efeitos:- Geração de texturas procedurais- Efeitos de iluminação per-vertex- Animação procedural em vértices- Displacement mapping

c. Vertex Programming

Struct input Vertex

Struct VertexInput{

float4 Position : POSITION0;float3 Normal : NORMAL;float4 TextureCoor : TEXCOORD0;

}

BINORMAL[n]BLENDINDICES[n]BLENDWEIGHT [n]COLOR[n]NORMAL[n]POSITION[n]PSIZE[n]TANGENT[n]TESSFACTOR[n]TEXCOORD[n]

Struct output Vertex

Struct VertexOutput{

float4 Position : POSITION0;float4 TextureCoor : TEXCOORD0;

}

COLOR[n]FOGPOSITIONPSIZETEXCOORD[n]

Struct VertexInput{

float4 Position : POSITION;float2 TexCoord : TEXCOORD0;

}

Struct VertexOutput{

floar4 Position : POSITION;float2 TexCoord : TEXCOORD0;

}

c. Vertex Programming

VertexOutPut AulaVerterxShader (VertexInput input){

VertexOutput output;WorldViewProjection = mul (mul(World, View), Projection);output.Position = mul(input.Position, WorldViewProjection);output.TexCoord = input.TexCoord;return (output);

}

c. Vertex Programming

d. Pixel Programming

Operações nesta etapa:- Computar a cor de um fragmento- Alterar iluminação “per-pixel”- gl_FragCoord

d. Pixel Programming

Struct input Pixel

Struct PixelInput{

float4 Color : COLOR0;}

COLOR[n]TEXCOORD[n]VFACEVPOS

Struct output Pixel

Struct PixelOutput{

float4 Position : POSITION0;float Depth : DEPTH;

}

COLOR[n]DEPTH[n]

Struct PixelInput{

float2 TexCoord : TEXCOORD0;}

d. Pixel Programming

Float4 pixelShader (PixelInput input) : COLOR{

return (tex2D (TextureSampler, input.TexCoord) * AmbientColor);}

d. Pixel Programming

Exemplo no XNA – Arquivo Ambiente.fx

float4 AmbientColor : COLOR0;

float4x4 WorldViewProjection : WORLDVIEWPROJECTION;texture Texture;sampler TextureSampler = sampler_state{

texture = <Texture>;magfilter = LINEAR;minfilter = LINEAR;mipfilter = LINEAR;

};

Exemplo no XNA – Arquivo Ambiente.fx

struct VertexInput{

float4 Position : POSITION;float2 TexCoord : TEXCOORD0;

};

struct VertexOutput{

float4 Position : POSITION;float2 TexCoord : TEXCOORD0;

};

VertexOutput vertexShader (VertexInput input){

VertexOutput output;WorldViewProjection = mul (mul (World, View), Projection);output.Position = mul(input.Position, WorldViewProjection);output.TexCoord = input.TexCoord;return (output);

}

Exemplo no XNA – Arquivo Ambiente.fx

struct PixelInput{

float2 TexCoord : TEXCOORD0;};

float4 pixelShader (PixelInput input) : COLOR{

//return (tex2D (TextureSampler, input.TexCoord)* AmbientColor);return (1.0f, 1.0f, 1.0f, 0.0f);

}

technique Default{

pass P0{

VertexShader = compile vs_1_1 vertexShader();PixelShader = compile ps_1_1 pixelShader ();

}}

Exemplo no XNA – Projeto .net

amespace Load3DObject{ /// <summary> /// This is the main type for your game /// </summary> public class Game1 : Microsoft.Xna.Framework.Game { private GraphicsDeviceManager graphics; private ContentManager content;

private Matrix world; private Model model;

private FPS fps; private FirstPersonCamera camera; private InputHandler input;

private Texture2D greyAsteroid; private Texture2D originalAsteroid;

Effect shader;

Exemplo no XNA – Projeto .net

public Game1() { graphics = new GraphicsDeviceManager(this); content = new ContentManager(Services);

input = new InputHandler(this); Components.Add(input); camera = new FirstPersonCamera(this); Components.Add(camera); }

Exemplo no XNA – Projeto .net

protected override void Initialize(){ base.Initialize(); shader.Parameters["AmbientColor"].SetValue(0.8f);}

Exemplo no XNA – Projeto .net

protected override void LoadGraphicsContent(bool loadAllContent) { if (loadAllContent) { model = content.Load<Model>(@"Content\Models\asteroid1"); greyAsteroid = content.Load<Texture2D>(@"Content\Textures\asteroid1-grey"); originalAsteroid = content.Load<Texture2D>(@"Content\Textures\asteroid1"); shader = content.Load<Effect>(@"Content\effects\ambiente"); }

}

protected override void UnloadGraphicsContent(bool unloadAllContent){ if (unloadAllContent == true) { content.Unload(); }}

Exemplo no XNA – Projeto .net

protected override void Update(GameTime gameTime) { if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed) this.Exit();

base.Update(gameTime); }

Exemplo no XNA – Projeto .net

protected override void Draw(GameTime gameTime) { graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

// TODO: Add your drawing code here world = Matrix.CreateRotationY( MathHelper.ToRadians(270.0f * (float)gameTime.TotalGameTime.TotalSeconds)) * Matrix.CreateTranslation(new Vector3(0, 0, -4000)); DrawModel(ref model, ref world, greyAsteroid);

world = Matrix.CreateRotationY( MathHelper.ToRadians(45.0f * (float)gameTime.TotalGameTime.TotalSeconds)) * Matrix.CreateRotationZ( MathHelper.ToRadians(45.0f * (float)gameTime.TotalGameTime.TotalSeconds)) * Matrix.CreateTranslation(new Vector3(0, 0, 4000)); DrawModel(ref model, ref world, originalAsteroid);

base.Draw(gameTime); }

Exemplo no XNA – Projeto .net

private void DrawModel(ref Model m, ref Matrix world, Texture2D texture){

Matrix[] transforms = new Matrix[m.Bones.Count];m.CopyAbsoluteBoneTransformsTo(transforms);

foreach (ModelMesh mesh in m.Meshes) { foreach (ModelMeshPart mp in mesh.MeshParts) { if (texture != null) shader.Parameters["Texture"].SetValue(texture); shader.Parameters["Projection"].SetValue(camera.Projection); shader.Parameters["View"].SetValue(camera.View); shader.Parameters["World"].SetValue(world * mesh.ParentBone.Transform); mp.Effect = shader; mesh.Draw(); } } }

e. General Pourpose GPUs

Requisitos dos Motores

Encapsulamento

Integração

Independência de Plataforma

Otimização em Hardware

Gerenciamento de Projeto

Arquitetura

Níveis de Abstração:

SDK

Ferramental

Arquitetura SDK

referência

3D Game Engine Architecture : Engineering Real-Time Applications with Wild Magic David H. Eberly

Arquitetura SDK

Interpretador de scripts

Matemática<<Biblioteca>>

Aúdio/vídeo<<Biblioteca>>

Renderização<<Biblioteca>>

Animação<<Biblioteca>>

Recursos<<Biblioteca>>

Redes<<Biblioteca>>

Física<<Biblioteca>>

Biblioteca Matemática

Operações de Vetores

Operações de Matrizes

Operações de Quaternions

Operações de Interceção

Biblioteca baseada em GPUs

referência

Essential Mathematics for Games and Interactive Applications : A Programmer's GuideJames M. Van Verth, Lars M. Bishop

Biblioteca de Rendering

Abstração de APIs

Implementação do Pipeline

Leitor de shaders

referência

Tricks of the 3D Game Programming Gurus-Advanced 3D Graphics and Rasterization André LaMothe

Biblioteca de Física

Biblioteca de Rede

referência

Programming Multiplayer Games Andrew Mulholland

Biblioteca de Recursos

referência

Standard Codecs: Image Compression to Advanced Video Coding M. Ghanbari

referência

www.gametutorials.com

Parser de Scripts

Mapeamento com atributos dos objetos dinâmicos de um cenário

Mapeamento com algumas funções do SDK

Arquitetura Ferramental

referência

3D Game Programming All in One Kenneth C Finney

Arquitetura Ferramental

SDK Editor de scripts

Editor de fases

Ambiente de teste

Motor de execução

Conversores Exportadores

Otimizadores

Editor de modelos

Arquitetura Ferramental

Engine Core

SDK

Level Editors

Script editors Conversores / Exportadores

Front End

BuildersEXEMPLO

Arquitetura Ferramental

top related