penn state astrobiology research center...

Post on 10-Aug-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Penn State Astrobiology Research Center (PSARC)

Christopher H. House, Ph.D.

• Astronomy: Sigurdsson, Wright, Mahadevan,

and the PSU Center for Exoplanets & Habitable Worlds

• Atmospheric Chemistry: Lyons (UCLA) & Kasting

• EPO: Heather Nelson & the PA Space Grant Consortium

• Evolutionary Genetics: Hedges & Shapiro

• Geobiology: Macalady, Orphan (Caltech), Patzkowsky, House, & Schopf

• Geochemistry: Arthur, Brantley, Fantle, Freeman, Kump,

McKeegan (UCLA), & Ohmoto

• Microbiology and Biochemistry: Bakermans, Brenchley, & Ferry

61 PSARC Completed Ph.D. Students N. Suits ’98; L. Brown ’99; A. Pavlov ’01; B. Borup ’01; S. Ono, ’01; P. Iver ’01; R. Hotinski ’02; M. Van Tuinen ’02; K. Yamaguchi ’02; Y. Watanabe ’02; H. Pointkiviska ’03; M. Borda, ’03; M. Hurtgen, ’03; S. Lawrence, ’04, A. Herrmann, ’04; F. Cruz, ’04; S. Shipkowski ’05; P. Kharecha, ’05; J. Blair, ’05; J. Eigenbrode, ’04; J. Debes, ’05; H. Buss, ’06; J. Biddle, ’06; A. Zerkle, ’06; Z. Krug, ’06; A. Smirnov, ’06; C. Cohn, ’06; C. Turich, ’06; S. Stafford, ’06; J. Moran, ’07; E. Herman, ’07; D. Hydutsky, ’07; S. Zimmerman, ’07; S. Goldman, ’07; M. Bachmann, ’07; K. Panchuk, ’07; A. Mandell, ’07; A. Riccardi, ’07; F. Battistuzzi, ’07; V. Cameron, ’08; L. Hausrath, ’08; B. Thomas; ’08, K. Meyer '08; A. Edson ’08; L. Horodyskyj ’09; E. Patridge ‘09; E. Beal ’09; M. Heinicke ’09; K. Moody ’09; B. Kimball ’09; M. Reichlen ‘10; J. Fulton; ’10; C. Junium ‘10; M. Wang ‘10; A. Diefendorf ’10; Haqq-Misra, ‘10; K. Dawson, 11; D. Jones, ’11; M. Rhodes ’11; Alexis Navarre-Sitchler ’11; Heidi Albrecht ’11

Education and Public Outreach • Undergraduate Minor & Ph.D. dual-title Program • Teacher professional development workshops • Exploration Day • Museum exhibits and events • Citizen Science Project on “Thermophiles in Your Basement”

NASA Missions related to Astrobiology

Mars Science Lab (and follow-on program)

Europa Orbiter

Mars Trace Gas Orbiter

Kepler

Titan Lake Lander

Enceladus Orbiter

PSARC (Penn State, UCLA, & Caltech): Signatures of Life from Earth and Beyond (2009-2014)

1. Developing new biosignatures

2. Biosignatures in relevant microbial ecosystems

3. Biosignatures in ancient rocks

4. Biosignatures in extraterrestrial settings

Topics to cover:

• Developing New Biosignatures

DNA in deep marine sediment (House)

• Biosignatures in relevant microbial ecosystems

Microbial Signatures of Ancient & Extraterrestrial Oceans (Macalady)

• Biosignatures in ancient rocks

Large-scale Perturbations of the Paleoproterozoic Carbon Cycle (Kump)

• Biosignatures in extraterrestrial settings

The Quest for Terrestrial Mass Planets around M dwarfs with Near-Infrared Spectroscopy (Mahadevan)

DNA in deep marine sediment

• Nucleic acids as signatures of life

• IODP – unique environments and samples

• A Paleome?

Nucleic acids as signatures of life

IODP – unique environments and samples

C0014 500 m east of vent

Okinawa hydrothermal mound

IODP – unique environments and samples -High productivity

margin environment

-Upper plate of subduction zone, unique in historical changes from accretionary to erosive type

-2 sites extending to around 500 (site 1378) and 700 (site 1379) meters below seafloor

A Paleome?

Willerslev and Cooper, 2005

A Paleome?

Astrobiology. 2005, 5(2): 141-153. Terrestrial Cretaceous black shale with marine microbes

Microbes in ancient ice and ocean sediments

Price, 2009

A Paleome?

Conclusions

• DNA is the ultimate biosignature on Earth

• DNA seems to be preserved in ancient marine sediments

• Ocean Drilling provides Astrobiology with great opportunities

14 Photo Wes Skiles

Microbial Signatures of Ancient and

Extraterrestrial Oceans

Kump (2008)

16

Conical Stromatolites

Photo J. Macalady

Or, cones may be the result of gas bubbles

enmeshed by a web of filamentous cells.

Macalady et al., in prep.

Magical Blue Hole Geochemistry

Photo Brian Kakuk

Photo Brian Kakuk

Magical Blue Hole

• Extensive biofilm with abundant

cones

• No cyanobacteria

• Long filaments abundant, but

likely heterotrophs

20

McCauley, Macalady et al. in prep.

21

Photo Brian Kakuk

Chlorobi

(non-filamentous,

anoxygenic photoautotrophs)

sulfate-reducing bacteria

planctomycetes

candidate divisions GN1, OP11, TM6, WS3, OP8, OP3

Chloroflexi

Magical Blue Hole

Bacterial 16S rRNA

22

Photo Brian Kakuk

Conclusions

Observation:

Neither oxygen production nor cyanobacteria are required for cone formation.

Interpretation:

Conical forms must be either

1) a general biosignature of gas exchange (but no bubbles observed),

or

2) a fundamental reflection of physics and chemistry of diffusion limitation in biofilms

23

Large-scale Perturbations of the Paleoproterozoic Carbon Cycle

Lee Kump, Christopher Junium and Michael Arthur

Department of Geosciences, Pennsylvania State University

Alex Brasier and Anthony Fallick

Scottish Universities Environmental Research Centre

Victor Melezhik, Aivo Lepland and Alenka Črne

Norwegian Geological Survey

Genming Luo

China University of Geosciences

and the FAR-DEEP Drilling Team

Kump (2008)

Kump and Barley (2007)

Fike et al. (2006)

Shuram-Wonoka Excursion

Melezhik V A et al. Geology 2007;35:655-658

©2007 by Geological Society of America

-----MIF----|

Victor Melezhik

Victor Melezhik

FAR-DEEP Cores 12A/12B

ca. 2050 Ma (Re-Os)

•Conclusions

• Rise of atmospheric oxygen linked to

cratonization, increased proportion of

subaerial volcanism

• Franceville-Onega Excursion (FOE) first

major carbon oxidation event at end of

Lomagundi-Jatuli CIE

• Likely related to oxidative weathering of huge

organic C deposits from LJ-CIE

Topics to cover: • In-situ geochemical analyses of microfossils

• Microbial ecosystems in deep flooded sinkholes (Macalady)

• Large-scale Perturbations of the Paleoproterozoic Carbon Cycle (Kump)

• The Quest for Terrestrial Mass Planets around M dwarfs with Near-Infrared Spectroscopy (Mahadevan)

The Quest for Terrestrial Mass Planets around M dwarfs with Near-Infrared Spectroscopy

www.unige.ch

Simulated Echelle Spectrum, NOAO

PSU: Suvrath Mahadevan, Larry Ramsey,

Ryan Terrien, Stephen Redman, Chad Bender,

Keegan McCoy, Rohit Deshpande, Arpita Roy,

Brandon Botzer, Nate Troupe, Steinn

Sigurdsson

NIST Laser Comb Team: Steve Osterman

(CASA), Gabriel Ycas, Scott Diddams, Frank

Quinlan (NIST)

Why search for planets around M dwarfs?

Most known hosts are ~1 Msun, but ~75% of stars are <0.5 MSun

Spectral class M: M~ .08-.5 Msun T ~ 3000-4000K

Planet Hosts Nearby

stars Stars

Robles et al. (2008)

Why search for planets around M dwarfs? Habitable zone for M dwarf is closer to the small star…

Which means a terrestrial planet in the habitable zone would impart

larger RV signal on star motion…

Where are the

Earths/Super Earths?

Does the planet-

metallicity correlation

extend to lower mass

stars?

However, M dwarfs emit mostly in the infrared,

(where well-developed instruments and techniques cannot be used)

Y+J+H

V

Pavlenko et al. (2007)

Typical M dwarf spectrum

NAI-funded PSU Pathfinder spectrograph:

Testbed spectrograph to explore

challenges in precision NIR RV

Off-the-shelf parts, Uncooled,

Fiber-fed, uses a Hawaii-1 array sensitive to 2.7 microns

Hobby-Eberly Telescope

Leading into a new instrument:

Habitable Zone Planet Finder (HZPF) - NSF MRI – funded!

A fully cooled, high resolution, fiber-fed spectrograph stationed at the Hobby-Ebery

Telescope. RV survey of ~300 M4-M9 stars.

New Hawaii-2 detector in production.

Challenges to working in the NIR

• Thermal Noise

• Modal Noise

• Telluric line

contamination

• Calibration

Wavelength calibration sources for the optical

aren’t as effective in the infrared. Instead, use:

CO2 Telluric Lines

RMS~6m/s

(CRIRES)

Figuera et al. 2010

NH3

RMS~11m/s

(CRIRES)

Bean et al.

2010

Mixtures of

telecom

gases

U/Ar, U/Ne

lamps

Mahadevan & Ge (2009)

The Holy Grail of wavelength calibration sources:

Laser Frequency Combs

www.menlosystems.com

Gilliam et al. (1974)

The first on-sky use of a NIR laser frequency

comb as an RV calibration reference

The first on-sky use of a NIR laser frequency

comb as an RV calibration reference

Calibration 1 (Comb)

Calibration 2 (Comb) Star

Order 37

Order 38

Order 39 {

{

{

Laser frequency comb results:

A Uranium/Neon Map calibrated with a laser

frequency comb

Redman et al. (2011)

Pathfinder NAI-funded test bed instrument for NIR RV

Thermal Blocking

Modal noise

Laser Frequency Comb calibration

Can achieve better than 10 m/s precision!

Ramping up for HZPF

Achieve better than 3 m/s precision!

Find terrestrial Planets in the Habitable Zone

Where are the Earths/Super Earths?

Does the planet-metallicity correlation extend to lower mass stars?

Magical Blue Hole

Archaeal 16S rRNA

50 McCauley, Macalady et al. in prep.

Magical Blue Hole

Bacterial 16S rRNA

McCauley, Macalady et al. in prep.

M dwarfs have plenty of RV information content

Reiners et al. (2010)

top related