q=a*b+c system

Post on 10-Jun-2022

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

1

AbstractionAbstraction levelslevels of a of a digitaldigital systemsystem

n+n+S

GD

+

DEVICE

CIRCUIT

GATE

RTL (Register Transfer Level)

SYSTEMq=a*b+c

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

2

FCMOS: Static Complementary CMOSFCMOS: Static Complementary CMOSVDD

F(In1,In2,…InN)

In1In2

InN

In1In2InN

PUN

PDN

PMOS only

NMOS only

PUN and PDN are dual logic networks

……

2

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

3

CMOS InverterCMOS Inverter

Polysilicon

In Out

VDD

GND

PMOSgate

Metal 1

NMOSgate

Contacts

N Well

V in Vout

VDD

Contacts bulk pMOS

Contacts bulk nMOS

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

4CMOS InverterCMOS InverterFirstFirst--Order DC AnalysisOrder DC Analysis

VOL = 0VOH = VDD

VDD VDD

V = VDDIn

VoutVout

V = 0In

V = 0In

Vin = VDD

3

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

5

Simulated voltage transfer Simulated voltage transfer charatcteritisccharatcteritisc

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5

Vin

(V)

Vou

t(V)

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

6

Regenerative PropertyRegenerative Property

A chain of inverters

v0 v1 v2 v3 v4 v5 v6

2

V (

Vol

t)

4

v0

v1v2

t (nsec)0

2 1

1

3

5

6 8 10Simulated response

Vdd = 5 VVlt = Vdd/2 = 2.5 V

4

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

7

Regenerative PropertyRegenerative Property

v0

v1

v3

finv(v)

f (v)

v3

out

v2 in

Regenerative Non-Regenerativev2

v1

f (v)

finv(v)

v3

out

v0 in

Es: Vin = Vo < Vlt (“0”)

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

8

Complementary CMOS Logic StyleComplementary CMOS Logic StylePUNPUN

5

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

9Example Gate: NANDExample Gate: NAND

OUT = GOUT = F

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

10

Example Gate: NORExample Gate: NOR

6

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

11

CMOS Inverter: Transient ResponseCMOS Inverter: Transient Response

V outVout

V DDV DD

inV = V DDV in = 0

(a) Low-to-high (b) High-to-low

CLCL

V in = 0

Vin = VDD

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

12

Delay DefinitionsDelay Definitions

Vout

tf

tpHL tpLH

tr

t

V in

t

90%

10%

50%

50% t

In

t

Out

Simulazione circuitale

Tp,HL Tp,LH

Simulazione logica

7

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

13CMOS Inverter Propagation DelayCMOS Inverter Propagation DelaySimplified approach 1Simplified approach 1

• modello di ordine 0 del MOSFET• capacità concentrata in uscita• fronti istantanei

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

14CMOS Inverter Propagation DelayCMOS Inverter Propagation DelaySimplified approach 2Simplified approach 2

Imax

VDD

Vout

Vin = VDD

CLImax

tpHL = CL VDD /2

I = vsat W Cox(Vdd –Vtn) max

capacità concentrata in uscitafronti istantaneitransitorio al 50% a corrente costante

8

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

15CMOS Inverter Propagation DelayCMOS Inverter Propagation DelaySimplified approach 3Simplified approach 3

tpHL = f(Ron.CL)

= 0.69 RonCL

V outVout

R n

R p

V DDV DD

V inV in

(a) Low-to-high (b) High-to-low

CLCL

ln (2)

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

16

Inverter loadInverter load

Load

Delay Tp (50%)

Cint CL,extTp,int

Ron

CL = CL,ext + CintTp = Tp,int + 0,69 Ron CL,ext

Tp,int in prima approssimazione indipendente dal dimensionamento

9

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

17TwoTwo differentdifferent questionsquestions::

1. Find a model compute the propagation delay of a chain of logic cells i.e. a model for synthesis and logic simulation tools

2. Find a model that allow us to size a chain of logic gates designed at transistor level i.e. a simplified model for circuit analysis BEFORE the necessary simulation at transistor level

TwoTwo differentdifferent modelsmodels !!

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

18Propagation delay model (1) based on Propagation delay model (1) based on linear relationshiplinear relationship

• TP,int: intrinsic delay (i.e. delay with no output loading)• RC : fraction of the delay caused by the output load• STr: fraction of the delay due to input slope

C = ΣCin,eq + Clinea

For each input 7 parameters: TP,int,HL TP,int ,LH Rup RDown SS,UP SS,Down Ceq,in

10

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

19

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

20Propagation delay model (2) based on Propagation delay model (2) based on lookup tableslookup tables

........

........

........

......ValueTd

TP = TP,int + TP(Ts,in, Cext)

table 1) Tp(Ts,in, Cext)

CextTs,in

table 2) TS,OUT(Ts,in, Cext)

........

........

........

......ValueTs,out

CextTs,in

sono inoltre da calcolare TP,int Ceq,in

Cext = ΣCin,eq + Clinea

11

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

21EsempioEsempio: : definizionedefinizione delledelle tabelletabelle

Cext

val(ps)

Ts,in

4 12 28 80

5.6

101

261

533

160 (fF)

1069

(Ts,in in ns)(Cext in pF)

1500

(ps)

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

22

Example: INVERTER 0.13um

pF

ns

pFns

Ts,

in

Ts,

in

Cext

CextTp,HL

Ts,out,fall

12

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

23

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

24

EsempioEsempio::

CL

CL

CLCin

13

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

252) Delay model to size a chain of logic 2) Delay model to size a chain of logic gatesgatesq dimensionare porte logiche connesse in

cascata al fine di minimizzare il tempo totaledi propagazione

q confrontare differenti schemi tuttidimensionati per minimizzare Tp,tot

q stimare Tp,tot

PRIMA di progettare le celle e di effettuare la simulazione circuitale che è semprenecessaria se si progetta una macrocella full-custom

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

26Delay model to size a chain of logic Delay model to size a chain of logic gates: logical effortgates: logical effort

isolare i contributi che dipendono da:• processo tecnologico• schema circuitale della porta logica• rete logica in cui la porta è inserita• dimensionamento

CL

CL

CLCin

14

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

27

q Ipotesi: § i transistori a canale n hanno uguale fattore

di forma (W/L) nMOS = Sn

§ i transistori a canale p hanno uguale fattoredi forma (W/L) pMOS = Sp

qα := (W/L)pMOS/ (W/L)nMOS

qE’ necessaria una specifica per definireil valore di α

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

28

B

VDD

A

Tpint ≈2 Tpint,not

Rup ≈ Rup,notRdown ≈ 2 Rdown,not

Cin = Cin,not = Cg(Sn,not + Sp,not)

B

VDD

A

A

Tpint ≈2 Tpint,not

Rup ≈ 2 Rup,notRdown ≈ Rdown,not

Cin = Cin,not

In prima In prima approssimazioneapprossimazioneSp = Sp,not

Sp = Sp,not

Sn = Sn,not

Sn = Sn,not

15

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

29

B

VDD

A

Tpint ≈ 2 Tpint,not

Rup ≈ Rup,notRdown ≈ Rdown,not

Cin = Cg(2Sn,not + Sp,not)

B

VDD

A

A

Tpint ≈ 2 Tpint,not

Rup ≈ Rup,notRdown ≈ Rdown,not

Cin = Cg(Sn,not + 2 Sp,not)

Sp = Sp,not

Sp = 2 Sp,not

Sn = 2 Sn,not

Sn = Sn,not

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

30αα:= (W/:= (W/L)L)pMOSpMOS/ (W// (W/L)L)nMOSnMOSsceltoscelto in in modomodo dada avereavere RupRup = = RdownRdown

αNOT = (Imax,n)/(Imax,p)

B

A

A B

F

VDDVDD

A B

A

B

F

VDD

A

A

F

1

2 2 2

2

21 1

4

4

Inverter 2-input NAND 2-input NOR

αNand2 = αNOT /2 αNor2 = 2 αNOT

Ipotesi: αnot = 2

16

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

31tempo di tempo di propagazionepropagazione dell’inverterdell’inverter di di area area minimiaminimia cheche nene pilotapilota unouno ugualeuguale

qTp,not = Tp,int + Rnot Cineq,not

qDefinizioni: § tpo : = Tp,int indipendente dal

dimensjonamento, funzione solo del processo e della scelta di α§ γ : = Cd/Cg funzione solo del processo (≈ 1)

q Tp,not = tpo + tpo/γ

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

32

GeneralizzazioneGeneralizzazione

CL

CL

CLCin

ii -1 i +1

17

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

33Delay model to size a chain of logic Delay model to size a chain of logic gates: logical effortgates: logical effort

tpo = Tp,int dell’invertitore di area minima pi parasitic delay (numero degli ingressi della porta logica)fi= Ceq,in,i+1/Ceq,in,ibi=numero di porte logiche connesse in uscitagi logical effort

iiiii gfbtpo

ptpoTpγ

+⋅=

NOTineq

iineq

NOT

ii C

CRR

g,,

,,=

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

34Logical EffortLogical EffortLogical effort is the ratio of input capacitance of a gate to the inputcapacitance of an inverter with the same output current

g = 1 g = 4/3 g = 5/3

B

A

A B

F

VDDVDD

A B

A

B

F

VDD

A

A

F

1

2 2 2

2

21 1

4

4

Inverter 2-input NAND 2-input NOR

assuming αNOT =2

18

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

35Delay model to size a chain of logic Delay model to size a chain of logic gates: logical effortgates: logical effort

tpo , tpo / γ dipendono solo dal processo e possono esserericavati tramite simulazione circuitale

pi , gi dipendono solo dallo schema circuitale e non daldimensionamento

bi dipende dalla rete in cui la parta logica è inseritafi dipende dal dimensionamentohi = bi fi gi stage effort

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

36Problem 1:Problem 1:Chain of N Inverters for Chain of N Inverters for minumumminumum TpTp

q Es: N =2

q Tp,tot = tpo + (tpo/γ) f1 + tpo + (tpo/γ) f2q F = f1 f2

-> Tp,tot = 2 tpo + tpo/γ (F/f2 + f2)

= 0 -> f2 = F1/2

q f1 = F/f2 -> f1 = f2 = F1/2

2

,df

totdTp

19

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

37Problem 1:Problem 1:Chain of N Inverters for Chain of N Inverters for minumumminumum TpTp

1,,/ ineqL

N CCFf ==When each stage is sized by f and has same eff. fanout f:

N Ff =

( )γ/10N

pp FNtT +=Minimum path delay

Effective fanout of each stage:

• each stage has the same effective fanout f• each stage has the same delay

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

38ExampleExample

CL= 8 C1

In Out

C1

283 ==fCL/C1 has to be evenly distributed across N = 3 stages:

( )

92*33

/1

0

0

=+=

+=

p

p

pp

tT

fNtT γ

assuming γ =1

I1 I2 I3

20

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

39ExampleExample

CL= 8 C1

In Out

C1

CL/C1 has to be evenly distributed across N = 3 stages:

C2= f C1 C3= f C2

I1 I2 I3

Sn2 =f SN1 Sn3 =f SN2= f2Sn1

•f =2•starting from the output:

• f3 = CL/C3 = 2 C3 = CL/2 = 4 C1• f2 = C3/C2 = 2 C2 = C3/2 = 2 C1• f1= C2/C1 = 2 C1 = C2/2 = C1

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

40

DimostrazioneDimostrazione per per induzioneinduzione

qN=1 è vero: f=F q Ipotizzo vero per N:qPer N+1 si ha:

e

si può quindi scrivere:

( ) N

N Ffff /1

21 ==== L

( ) ( )11 ++++= NfNftpo

tpoNTpγ

( )1121 ++ == N

N

NN ffffffF L

+

++= +

+

1

/1

1

)1( N

N

N

ffF

Ntpo

tpoNTpγ

21

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

41

q Il valore diche rende minimo Tp , è

da cui si ricava anche

1+Nf

( ) )1/(1

1

+

+ = N

N Ff

( ) 1

)1/(1

/1

1

1 +

+ ===+ N

N

Nf

N

fFF

fN

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

42Problem 2: Optimize PathProblem 2: Optimize Path

Cin

CL= 12 Cin

p1 = 2b1 =1g1 = 4/3

αNOT = 2

p2 = 2b2 =1g2 = 5/3

p3 = 2b3 =1g3 = 4/3

p4 = 1b4 =1g4 = 1

1

2

34

22

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

43

Optimum Effort per StageOptimum Effort per StageWhen each stage bears the same effort:

N Hh =

( ) ( ) ( ) N

iiitotP NHtpo

ptpohtpo

ptpoT /1

, γγ+=+= ∑∑∑

Minimum path delay

Effective fanout of each stage:

ii

i gbh

f =

Stage efforts: b1g1f1 = b2g2f2 = … = bNgNfN

∏∏==N

i

N

iineqL

N bgCCFGBh11

1,,/

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

44Problem 2: Optimize PathProblem 2: Optimize Path

Cin

CL= 12 Cin

αNOT = 2γ = 1

• h =2.44•Sizing from the output:

• f4 = h/(g4 b4 )= 2.44 f4 = CL/C4 C4 = CL/2.44 = 4.9 Cin• f3 = h/(g3 b3 )= 1.83 f3 = C4/C3 C3 = C4/1.83 = 2.7 Cin• f2 = h/(g2 b2 )= 1.45 f2 = C3/C2 C2 = C3/1.45 = 1.8 Cin• f1 = h/(g1 b1 )= 1.83 f1 = C2/C1 C1 = C2/1.83 = Cin

•Tp,tot/tpo = (S pi) + N h/ γ = 7 + 4 2.44 = 16.76•CL/ C1 = (CL/ C4 )*(C4/ C3)*( C3/ C2)*( C2/ C1) = 12

1

2

3 4

23

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

45

Example:Example:qCompare alternative logic structures

varying CLF = ABCDEFGH

p1 = 4b1 =1g1 = 6/3

p2 = 2b2 =1g2 = 5/3

p2 = 1b2 =1g2 = 1p1 = 8

b1 =1g1 = 10/3

scheme A

scheme B

scheme C

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

46Problem 3:Problem 3:Optimum Number of inverter (Buffer)Optimum Number of inverter (Buffer)

For a given load, CL and given input capacitance CinFind optimal sizing f and number of stages N

( )

+=+=

ff

fFt

fNtT p

pp lnlnln

/1 0

0

γγ

γ

0ln

1lnln2

0 =−−

⋅=∂∂

fffFt

fT pp γ

γ

fF

NCfCFC in

N

inL lnln

=→=⋅=

( )ff γ+= 1exp

24

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

47

Optimum Effective Optimum Effective FanoutFanout ffOptimum f for given process defined by γ

( )ff γ+= 1exp

fopt = 3.6for γ=1

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

48Sensibilità al numero di stadiSensibilità al numero di stadi

25

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

49

ProgettoProgetto bufferbuffer

q noto il processo tecnologico, è noto ilvalore di γ

q dal valore di γ si ricava il fattore ottimodi dimensionamento fott

q il numero ottimo di stadi èq si sceglie il valore di N interoq si calcola f = (F)1/N

ott

ott fF

Nlnln

=

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

50ExampleExample

CL= 8 C1

In Out

C1

when N = 3 stages: f = 2 < fott Tp/tpo = 9If we optimize the buffer

( )

6.78.2*22

8.2,2

6.1lnln

0

2/1

=+=

===

→==

p

p

ott

ott

tT

FfN

fF

Nγ =1

26

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

51

DimensionamentoDimensionamento

CL/C1 has to be evenly distributed across N = 2 stages:

•f =2.8•starting from the output:

• f2 = CL /C2 = 2.8 C2 = CL/2.8 = 2.8 C1• f1= C2/C1 = 2.8 C1 = C2/2.8 = CIN

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

52

Problem 4: Problem 4:

q Isolating fan-in from fan-out using buffer insertion

CLCL

N ? f ?

27

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

53

Optimum Effort per StageOptimum Effort per Stage

hH

NBFGHhN

lnln

11 =⇒==

When each stage bears the same effort:

( ) ( )

21

/1

1

1

1

,

)(

NNN

NHtpo

tpoNNptpo

htpo

ptpoT

NN

i

iitotP

+=

++−=

=+=

∑∑

γ

γ

Minimum path delay

( )hh γ+= 1exp

N1, G1, B1, pi noti N2 inverterG2=1, B2=1, pi=1

CLCIn

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

54ExampleExample

CL = 500 CinF = ABCDEFGH

Cin

28

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

55

SoluzioniSoluzioni possibilipossibili αNOT = 2 γ = 1

q dimensiono per rendere minimo Tp,tot (problema 2, schema A)§ h = 6.2 (> hott)§ Tp,tot/tpo = 31.8

q Dimensionamento minimo della rete che realizza la funzione nand e a valle un buffer con F =500 (problema 2 con F =1, schema C, e problema 3 con F=500)§ Nbuffer = 4.8 -> N =5, f = 3.46 § Tp,tot/tpo = 9.65 + (5 +17) = 31.65

q Ottimizzo la rete che realizza la logica e la catena di invertitori contemporaneamente (problema 4)

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

56

SoluzioneSoluzione problemaproblema 44q Schema A per realizzare AND8§ H = 500 * ? gi= 1480§ Nott= ln H/ ln hott = 5.69 -> N = 6§ N2 = N –N1 = 2§ h = (H)1/6 = 3.37§ Tp,tot/tpo = Spi + 6 h = 9+ 6* 3.37 = 29.22

q Schema C per realizzare AND8§ H = 500 * ? gi= 1666§ Nott= ln H/ ln hott = 5.8 -> N = 6§ N2 = N –N1 = 4§ h = (H)1/6 = 3.44§ Tp,tot/tpo = Spi + 6 h = 10 + 6* 3.44 = 30.64

29

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

57

ProgettoProgettoq noto il processo tecnologico, è noto il valore

di γq dal valore di γ si ricava il fattore ottimo di

dimensionamento hottq si calcola H = BGFq il numero ottimo di stadi èq si sceglie il valore di N intero e

si ricava N2 = N-N1q si calcola h = (H)1/N

q si ricava il valore di fi =h/bigi e quindi ildimensionamemnto di ogni stadioprocedendo dall’ultimo verso il primo

ott

ott hH

Nlnln

=

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

58

Branching EffortBranching Effort

pathon

pathoffpathon

C

CCb

−− +=

Critica path

Non critical path

Caso particolare:in uscita sono connesseN porte logiche uguali

Con-path = Ceq,inCoff-path = (N-1) Ceq,inb = N -> coincide con il fanout logico

30

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

59

Where Does Power Go in CMOS?Where Does Power Go in CMOS?

• Dynamic Power Consumption

• Short Circuit Currents

• Leakage

Charging and Discharging Capacitors

Short Circuit Path between Supply Rails during Switching

Leaking diodes and transistors

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

60

Short Circuit CurrentsShort Circuit Currents

Vin Vout

CL

Vd d

I VD

D (m

A)

0.15

0.10

0.05

Vin (V)5.04.03.02.01.00.0

31

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

61

LeakageLeakage

Vout

Vdd

Sub-ThresholdCurrent

Drain JunctionLeakage

Sub-threshold current one of most compelling issuesin low-energy circuit design!

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

62

SubthresholdSubthreshold Leakage ComponentLeakage Component

32

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

63

ModelloModello per per stimarestimare la la potenzapotenza in in programmiprogrammi di di simulazionesimulazionee e sintesisintesi logicalogica

ModelloModello basatobasatosusu looklook--up tableup table

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

64Inverter

pW

pW (valore medio)

pW

pF

ns

pFns

Po

ten

zast

atic

a

33

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

65

Energia assorbita a seguitodella transizione degli ingressiespressa in pJ

in questo valore sono consideratii contributi associati alla corrente di cortocircuito e agli effetti reattivi intrinseci

Ts,

inCext

Cext

Ts,

in

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

66

Caratterizzazione Tp

34

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

67

Principles for Power ReductionPrinciples for Power Reduction

qPrime choice: Reduce voltage!§ Recent years have seen an acceleration in

supply voltage reduction§ Design at very low voltages still open

question (0.6 … 0.9 V by 2010!)

qReduce switching activity qReduce physical capacitance

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

68

Maximum Clock FrequencyMaximum Clock Frequency

tCK,Q + max{tp,rc} + tsetup ≤ TCK

CK

DinRC

tCK,Q + min{tp,rc} > thold

D Q D QDoutclockedDinclocked Dout

35

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

69

Latch versus RegisterLatch versus Registerq Latch

stores data when clock is low or high

D

Clk

Q D

Clk

Q

q Registerstores data when clock rises (or falls)

Clk Clk

D D

Q Q

Ex: positive latch

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

70Latch Latch trasparentetrasparente durantedurante la la fasefasebassabassa del clockdel clock

36

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

71

ModelloModello a a interruttoriinterruttori

qCK =0

qCK =1

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

72

Register ParametersRegister Parameters

D

Clk

Q

D

Q

Clk

TpClkQ

Thold

T

Tsu

Delays can be different for rising and falling data transitions

TsetupTholdTp dal fronte del clock all’uscita

37

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

73

Register designRegister design

•input data NOT on an high impedance node•two clock phases: avoiding clock overlap

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

74

ModelloModello a a interruttoriinterruttori

qCK =0

qCK =1

38

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

75Typical standard cell static registerTypical standard cell static register

buffered Q and Q

generatedlocally and φφ

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

76RegistroRegistro staticostatico mastermaster--slaveslavememorizzazionememorizzazione: : bistabilebistabile

Tsu

39

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

77

RegistroRegistro staticostatico mastermaster--slaveslave

Thold

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

78

RegistroRegistro staticostatico mastermaster--slaveslave

TCK,Q

40

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

79

……

area

potenza statica (pW)

CMOS 0.13um

segnale di clock: Cin (pF)

Energia associata alle transizioni del clockper differenti valori di Q e D (pJ)

durata minima delle fasi alta e bassadel clock (ns)

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

80

……

segnale di dato: Cin (pF)

Energia associata alle transizioni del datoper differenti valori di Q e del clock (pJ)

hold time in funzione delladurata della transizione del segnale diclock (ns)

setup time in funzione delladurata della transizione del segnale diclock (ns)

41

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

81

TP,CKQ e Tslope,outin funzione dellacapacità di carico e delladurata della transizionedel segnale di clock

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

82RegistroRegistro con con ingressoingresso asincronoasincrono di di resetreset

Reset = 0 Q = 1

42

Adapted from J. Rabaey et al, Digital Integrated Circuits2nd, 2003 Prentice Hall/Pearson a.a. 2008-2009

83

ModelloModello a a interruttoriinterruttori

q Ingresso di reset applicato quando CK =0

qIngresso di reset applicato quando CK =1

top related