quantum enhanced magnetometer and squeezed state of light

Post on 17-Jan-2022

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Quantum enhanced magnetometer and squeezedstate of light tunable filter

Eugeniy E. Mikhailov

The College of William & Mary

October 5, 2012

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 1 / 42

Transition from classical to quantum field

Classical analogField amplitude aField real partX1 = (a∗ + a)/2Field imaginary partX2 = i(a∗ − a)/2

E(φ) = |a|e−iφ = X1 + iX2

X2

X1

φ

Quantum approachField operator aAmplitude quadratureX1 = (a† + a)/2Phase quadratureX2 = i(a† − a)/2

E(φ) = X1 + i X2

X2

X1

φ

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 3 / 42

Squeezed quantum states zooX

2

X1

φ

Notice ∆X1∆X2 ≥ 14

Unsqueezedcoherent

X2

X1

φ

Amplitudesqueezed

X2

X1

φ

Phasesqueezed

X2

X1

φ

Vacuumsqueezed

X2

X1

θ

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 4 / 42

Squeezed quantum states zooX

2

X1

φ

Notice ∆X1∆X2 ≥ 14

Unsqueezedcoherent

X2

X1

φ

Amplitudesqueezed

X2

X1

φ

Phasesqueezed

X2

X1

φ

Vacuumsqueezed

X2

X1

θ

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 4 / 42

Squeezed quantum states zooX

2

X1

φ

Notice ∆X1∆X2 ≥ 14

Unsqueezedcoherent

X2

X1

φ

Amplitudesqueezed

X2

X1

φ

Phasesqueezed

X2

X1

φ

Vacuumsqueezed

X2

X1

θ

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 4 / 42

Squeezed quantum states zooX

2

X1

θ

Notice ∆X1∆X2 ≥ 14

Unsqueezedcoherent

X2

X1

φ

Amplitudesqueezed

X2

X1

φ

Phasesqueezed

X2

X1

φ

Vacuumsqueezed

X2

X1

θ

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 4 / 42

Self-rotation of elliptical polarization in atomic medium

SR

Ω+ Ω-

A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of4-6 dB noise suppression

aout = ain +igL2

(a†in − ain) (1)

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 5 / 42

Simplified setup

PBSPBSRB87

LOV.Sq

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 7 / 42

Setup

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 8 / 42

Noise contrast vs detuning in hot 87Rb vacuum cell

Fg = 2→ Fe = 1,2

-2 0 2 4 6 8

10 12

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Noi

se (

dB)

Frequency (GHz)

Noise vs detuning

Transmission PSR noise

-1 0 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10

Noi

se (

dB)

Quadrature angle (Arb.Units)

Noise vs quadrature angle

Fg = 1→ Fe = 1,2

-1-0.5

0 0.5

1 1.5

2 2.5

3 3.5

4 4.5

6.6 6.8 7 7.2 7.4 7.6 7.8

Noi

se (

dB)

Frequency (GHz)

Noise vs detuning

Transmission PSR noise

-2-1 0 1 2 3 4 5 6 7 8

2 4 6 8 10 12

Noi

se (

dB)

Quadrature angle (Arb.Units)

Noise vs quadrature angle

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 9 / 42

Atomic low frequency squeezing source

-86

-84

-82

-80

-78

-76

-74

-72

-70

-68

0 250 500 750 1000

Nois

espectr

aldensity

(dB

m/H

z)

Noise Frequency (kHz)

(a)

(b)

-85

-80

-75

-70

-65

-60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(a)

(b)

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 10 / 42

Optical magnetometer based on Faraday effect87Rb D1 line

F=1

F=2

F'=1

F'=2

m=0

m'=0

m=1

m=-1

-+

Susceptibility vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

detuning

χ′′

χ′

Polarization rotation vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 11 / 42

Optical magnetometer based on Faraday effect87Rb D1 line

F=1

F=2

F'=1

F'=2

m=0

m'=0

m=1

m=-1

-+

Susceptibility vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

detuning

χ′′(+∆)χ′′(−∆)χ′(+∆)χ′(−∆)

Polarization rotation vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 11 / 42

Optical magnetometer based on Faraday effect87Rb D1 line

F=1

F=2

F'=1

F'=2

m=0

m'=0

m=1

m=-1

-+

Susceptibility vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

detuning

χ′′(+∆)χ′′(−∆)χ′(+∆)χ′(−∆)

Polarization rotation vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 11 / 42

Optical magnetometer based on Faraday effect87Rb D1 line

F=1

F=2

F'=1

F'=2

m=0

m'=0

m=1

m=-1

-+

Susceptibility vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

detuning

χ′′(+∆)χ′′(−∆)χ′(+∆)χ′(−∆)

Polarization rotation vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 11 / 42

Optical magnetometer based on Faraday effect87Rb D1 line

F=1

F=2

F'=1

F'=2

m=0

m'=0

m=1

m=-1

-+

Susceptibility vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

detuning

χ′′(+∆)χ′′(−∆)χ′(+∆)χ′(−∆)

Polarization rotation vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 11 / 42

Optical magnetometer based on Faraday effect87Rb D1 line

F=1

F=2

F'=1

F'=2

m=0

m'=0

m=1

m=-1

-+

Susceptibility vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

detuning

χ′′(+∆)χ′′(−∆)χ′(+∆)χ′(−∆)

Polarization rotation vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 11 / 42

Optical magnetometer and non linear Faraday effect

Naive model of rotation

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Rb Cell Rb Cell

λ/2λ/2

SMPMFIBER

GPLENSMAGNETIC

SHIELDING

LENS

PBS

BPD

SCOPE

LASER

Rb87

B

Experiment

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 12 / 42

Optical magnetometer and non linear Faraday effectNaive model of rotation

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Rb Cell Rb Cell

λ/2λ/2

SMPMFIBER

GPLENSMAGNETIC

SHIELDING

LENS

PBS

BPD

SCOPE

LASER

Rb87

B

Experiment

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 12 / 42

Magnetometer response vs atomic density

1010

1011

1012

0

0.05

0.1

0.15

0.2

0.25

Atomic density (atoms/cm3)

Slo

pe o

f ro

tation s

ignal (V

/µT

)

1010

1011

10120.75

0.8

0.85

0.9

0.95

1

Norm

aliz

ed tra

nsm

issio

n

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 13 / 42

Shot noise limit of the magnetometer

Rb Cell Rb Cell

λ/2λ/2

SMPMFIBER

GPLENSMAGNETIC

SHIELDING

LENS

PBS

BPD

SCOPE

LASER

Rb87

B

S = |Ep + Ev |2 − |Ep − Ev |2S = 4EpEv

< ∆S > ∼ Ep < ∆Ev >

Scope

Ep

Ev

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 14 / 42

Squeezed enhanced magnetometer setup

Rb Cell Rb Cell

PhR λ/2λ/2

SMPM

FIBER

GPLENS

PBS

LENS

PBS

BPD

SCOPE SQUEEZER MAGNETOMETER

LENS

y

x

zk

Laser

Field

Sq.

Vac

yx

zk

y

x Laser

Field

Sq.

Vac

(a)

(b)

Note: Squeezed enhanced magnetometer was first demonstrated byWolfgramm et. al Phys. Rev. Lett, 105, 053601, 2010.

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 15 / 42

Magnetometer noise floor improvements

-86

-84

-82

-80

-78

-76

-74

-72

-70

-68

0 250 500 750 1000

Nois

espectr

aldensity

(dB

m/H

z)

Noise Frequency (kHz)

(a)

(b)

-85

-80

-75

-70

-65

-60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(a)

(b)

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 16 / 42

Magnetometer noise spectra

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 17 / 42

Noise suppression and response vs atomic density

Noise suppression

1010

1011

1012

−6

−4

−2

0

2

Atomic density (atoms/cm3)

Nois

e s

uppre

ssio

n (

dB

)

5 kHz

100 kHz

500 kHz

1 MHz

Response

1010

1011

1012

0

0.05

0.1

0.15

0.2

0.25

Atomic density (atoms/cm3)

Slo

pe

of

rota

tio

n s

ign

al (V

/µT

)

1010

1011

10120.75

0.8

0.85

0.9

0.95

1

No

rma

lize

d tra

nsm

issio

n

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 18 / 42

Magnetometer with squeezing enhancement

Rb Cell Rb Cell

λ/4 λ/2λ/2

SMPMFIBER

GPLENS

PBS

MAGNETIC

SHIELDING

MAGNETIC

SHIELDING

LENS

PBS

BPD

SCOPE SQUEEZER MAGNETOMETER

LASER

Rb87Rb87

1

10

100

1010 1011 1012

Sensitiv

ity

pT

/√H

z

Atomic density (atoms/cm3)

(a)

(b)

coherent probesqueezed probe

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 19 / 42

Light group velocity expression

Group velocity vg = cω ∂n

∂ω

Susceptibility

-1

-0.5

0

0.5

1

-10 -5 0 5 10

detuning

χ′′

χ′ Rotation vs B field

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 20 / 42

Light group velocity expression

Group velocity vg = cω ∂n

∂ω

Susceptibility

-1

-0.5

0

0.5

1

-10 -5 0 5 10

detuning

χ′′

χ′

Rotation vs B field

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 20 / 42

Light group velocity estimate

Group velocity vg = cω ∂n

∂ω

Delay τ = Lvg∼ ∂n

∂ω ∼ ∂R∂B

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 21 / 42

Light group velocity estimate

Group velocity vg = cω ∂n

∂ω

Delay τ = Lvg∼ ∂n

∂ω ∼ ∂R∂B

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 21 / 42

Squeezing vs magnetic field

Spectrum analyzer settings: Central frequency = 1 MHz, VBW =3 MHz, RBW = 100 kHz

Rb Cell Rb Cell

λ/2λ/2

SMPMFIBER

GPLENSMAGNETIC

SHIELDING

LENS

PBS

BPD

SCOPE

LASER

Rb87

B

0 0.2 0.4 0.6 0.8 1 1.2−5

0

5

10

15

Magnetic field (G)

No

ise

po

we

r (d

B)

0 0.05 0.1

−2.5

−2

−1.5

−1

−0.5

0

(b) squeezed

(a) antisqueezed

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 22 / 42

Squeezing vs magnetic fieldSpectrum analyzer settings: Central frequency = 1 MHz, VBW =3 MHz, RBW = 100 kHz

0

0.1

B−

fie

ld(G

)

−100 0 100

−2

−1

0

No

ise

(dB

)

0

0.1

B−

fie

ld(G

)

−100 0 100

−2

−1

0

No

ise

(dB

)

0

0.1

B−

fie

ld(G

)

−200 0 200

−2

−1

0

time (µs)

No

ise

(dB

)

−1 −0.5 0 0.5 1

−1 −0.5 0 0.5 1

−1 −0.5 0 0.5 1time (ms)

(d)

(e)

(f)

(a)

(b)

(c)

SNL

SNL

SNL

0 0.2 0.4 0.6 0.8 1 1.2−5

0

5

10

15

Magnetic field (G)

No

ise

po

we

r (d

B)

0 0.05 0.1

−2.5

−2

−1.5

−1

−0.5

0

(b) squeezed

(a) antisqueezed

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 22 / 42

Time advancement setup

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 23 / 42

Squeezing modulation and time advancement

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 24 / 42

Squeezing after advancement cell

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 25 / 42

Advancement vs power

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 26 / 42

Advancement vs power

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 26 / 42

Quantum limited interferometers revisited

Vacuum input

laser

Squeezed input

laser

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 27 / 42

Limiting noise - Quantum Optical noise

Next generation of LIGO will bequantum optical noise limited at almost all detection frequencies.

shot noiseUncertainty in number ofphotons

h ∼√

1P

(2)

radiation pressure noisePhotons impart momentum tomirrors

h ∼√

PM2f 4 (3)

There is no optimal light power to suit all detection frequency.Optimal power depends on desired detection frequency.

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 28 / 42

Limiting noise - Quantum Optical noise

Next generation of LIGO will bequantum optical noise limited at almost all detection frequencies.

shot noiseUncertainty in number ofphotons

h ∼√

1P

(2)

radiation pressure noisePhotons impart momentum tomirrors

h ∼√

PM2f 4 (3)

There is no optimal light power to suit all detection frequency.Optimal power depends on desired detection frequency.

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 28 / 42

Limiting noise - Quantum Optical noise

Next generation of LIGO will bequantum optical noise limited at almost all detection frequencies.

shot noiseUncertainty in number ofphotons

h ∼√

1P

(2)

radiation pressure noisePhotons impart momentum tomirrors

h ∼√

PM2f 4 (3)

There is no optimal light power to suit all detection frequency.Optimal power depends on desired detection frequency.

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 28 / 42

Limiting noise - Quantum Optical noise

Next generation of LIGO will bequantum optical noise limited at almost all detection frequencies.

shot noiseUncertainty in number ofphotons

h ∼√

1P

(2)

radiation pressure noisePhotons impart momentum tomirrors

h ∼√

PM2f 4 (3)

There is no optimal light power to suit all detection frequency.Optimal power depends on desired detection frequency.

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 28 / 42

Interferometer sensitivity improvement with squeezing

Projected advanced LIGO sensitivity

F. Ya. Khalili Phys. Rev. D 81, 122002 (2010)Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 29 / 42

EIT filter

0

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100

Tra

nspa

renc

y [A

rb. U

nit]

Probe detuning [Arb. Unit]

Probe transparency dependence on its detuning.

|b〉

|c〉

ωbc

|a〉

ωp

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 30 / 42

EIT filter

0

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100

Tra

nspa

renc

y [A

rb. U

nit]

Probe detuning [Arb. Unit]

Probe transparency dependence on its detuning.

|b〉

|c〉

ωbc

ωd

|a〉

ωp

0

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100

Tra

nspa

renc

y [A

rb. U

nit]

Probe detuning [Arb. Unit]

Probe transparency dependence on its detuning.

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 30 / 42

Squeezing and EIT filter

(V out

1V out

2

)=

(A2+ A2

−A2− A2

+

)(V in

1V in

2

)+[1−

(A2+ + A2

)]( 11

)

ϕ± =12

(Θ+ ±Θ−)

A± =12

(T+ ± T−)

|b〉

|c〉

ωbc

ωd

|a〉

ωp

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 31 / 42

Squeezing and EIT filter

(V out

1V out

2

)=

(A2+ A2

−A2− A2

+

)(V in

1V in

2

)+[1−

(A2+ + A2

)]( 11

)

ϕ± =12

(Θ+ ±Θ−)

A± =12

(T+ ± T−)

|b〉

|c〉

ωbc

ωd

|a〉

ωp

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 31 / 42

Squeezing and EIT filter

(V out

1V out

2

)=

(A2+ A2

−A2− A2

+

)(V in

1V in

2

)+[1−

(A2+ + A2

)]( 11

)

ϕ± =12

(Θ+ ±Θ−)

A± =12

(T+ ± T−)

|b〉

|c〉

ωbc

ωd

|a〉

ωp

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 31 / 42

Squeezing and EIT filter

(V out

1V out

2

)=

(A2+ A2

−A2− A2

+

)(V in

1V in

2

)+[1−

(A2+ + A2

)]( 11

)

ϕ± =12

(Θ+ ±Θ−)

A± =12

(T+ ± T−)

|b〉

|c〉

ωbc

ωd

|a〉

ωp

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 31 / 42

Squeezing and EIT filter setup

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 32 / 42

Squeezing and EIT filter setup

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 32 / 42

EIT filter and measurements without light

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Tra

nsm

issio

n (

Arb

. U

nits)

Noise Frequency (MHz)

Coherent signal

|b〉

|c〉

ωbc

ωd

|a〉

ωp

Signal in the noise quadratures

-4

-2

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2

No

ise

po

we

r (d

Bm

)

Noise Frequency (MHz)

-4

-2

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2

No

ise

po

we

r (d

Bm

)

Noise Frequency (MHz)

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 33 / 42

Squeezing angle rotationX

2

X1

θ

X2

X1

θ

(V out

1V out

2

)=

(cos2 ϕ+ sin2 ϕ+

sin2 ϕ+ cos2 ϕ+

)(A2+ A2

−A2− A2

+

)(V in

1V in

2

)+[1−

(A2+ + A2

)]( 11

)Locked at 300kHz Locked at 1200kHz

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 34 / 42

Narrower filter

T=35C, no controltransmission 42%

0 0.2 0.4 0.6 0.8 1−2

0

2

4

6

8

10Noise vs frequency through atoms: control off (35 degrees)

Frequency (MHz)

Noi

se(d

B)

output

Input

T=40C, no controltransmission 17%

0 0.2 0.4 0.6 0.8 1−2

0

2

4

6

8

10

Frequency (MHz)

Noi

se(d

B)

Noise vs frequency through atoms: control off (40 degrees)

Input

output

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 35 / 42

Narrower filter

T=35C, no controltransmission 42%

0 0.2 0.4 0.6 0.8 1−2

0

2

4

6

8

10

Noise frequency (MHz)

Noi

se (

dB)

Noise vs frequency through EIT (35 degrees)

Input

output

T=40C, no controltransmission 17%

0 0.2 0.4 0.6 0.8 1−2

0

2

4

6

8

10

Frequency (MHz)

Noi

se (

dB)

Noise vs frequency through EIT (40 degrees)

Input

output

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 35 / 42

Excess noise and leakage

0 0.5 1 1.5 2−2

0

2

4

6

8

10

12

14

16

Effect of leakage photons

MHz

dB

Shot noiseOutput noise, 1 mV leakageOutput noise, 20 mV leakage

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 36 / 42

Theoretical prediction for MOT squeezing with 87Rb

Fg = 2→ Fe = 1,2 high optical density is very important

-1000 -500 0 500 1000 1500

-8

-4

0

4

8

12

16

20

24

-1000 -500 0 500 1000 1500

-8

-4

0

4

8

12

16

20

24

-1000 -500 0 500 1000 1500

-8

-4

0

4

8

12

16

20

24

-1000 -500 0 500 1000 1500

-8

-4

0

4

8

12

16

20

24

Laser detuning (MHz)

γ = 10-4 Γ

F=2 to F'=2F=2 to F'=1

87Rb D1Rabi = 30 Γ

squeezing antisqueezing

γ = 10-2 Γ

F=2 to F'=2F=2 to F'=1

Optical density: 100 500 900 1300 1700

γ = 10-1 Γ

F=2 to F'=2F=2 to F'=1

Nor

mal

ized

noi

se p

ower

(dB

)

γ = 10-3 Γ

F=2 to F'=2F=2 to F'=1

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 37 / 42

MOT squeezer

Cloud size =1 mm, T = 200 µK, N = 7× 109 1/cm3,OD = 2, beam size = 0.1 mm, 105 interacting atoms

PBSPBS

V.Sq LO

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 38 / 42

Noise contrast in MOT with 87Rb Fg = 2→ Fe = 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9N

ois

e (

dB

)

Quadrature angle (Arb. Units)

(a)

(b)

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 39 / 42

Squeezing in MOT with 87Rb Fg = 2→ Fe = 1

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12N

ois

e (

dB

)

Quadrature angle (Arb. Units)

(a)

(b)

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 40 / 42

People

Travis Horrom and Gleb Romanov

Irina Novikova

Robinjeet Singh, LSU

Jonathan P. Dowling, LSU

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 41 / 42

Summary

We demonstrate fully atomic squeezed enhanced magnetometerMagnetometer noise floor lowered in the range from several kHzto several MHzDemonstrated sensitivity as low as 1 pT/

√Hz in our particular

setupFirst demonstration of superluminal squeezing propagation withvg = c/2000 or time advancement of 0.5 µS

For more details:T. Horrom, et al. “Quantum Enhanced Magnetometer with LowFrequency Squeezing”, PRA, 86, 023803, (2012).T. Horrom, et al. “All-atomic generation and noise-quadraturefiltering of squeezed vacuum in hot Rb vapor”, arXiv:1204.3967.

Support from

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 42 / 42

top related