radiation storms in the near space environment mikhail panasyuk, skobeltsyn institute of nuclear...

Post on 06-Jan-2018

219 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Radiation storms in several 100’s keV particles flux variations

TRANSCRIPT

Radiation Storms in the Near Space Environment

Mikhail Panasyuk,

Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow

State University

Solar storms,

Radiation storms,

Geomagnetic storms

Intensification of solar activity

Radiation storms in several 100’s keV particles flux variations

Topics to search Where are these guys from? - radiation belt; - SEP events; - ionosphere

What kind of physical mechanisms for acceleration and transport are dominated during extreme events?

- radial diffusion; - local rapid acceleration; - injection ; - local losses

Galactic cosmic rays

Solar energetic particles

Radiation belts

Earth’s radiation environment

• SONG (Solar Neutrons and Gamma- rays)

• MKL (Monitor of the cosmic rays)

• SKI-3 (Cosmic ray nuclei detector)

Energetic particles instruments onboard Coronas-F

CORONAS-F:MKL,SKI, SONG, instruments:

Electrons ~ 0.3 -12 МeV &

Protons ~ 1 - > 200 МэВ

Ions р -Mg with 2 -30 MeV/nucl X, gamma –rays with ~ 0.03 - 200 МэВ Neutrons

Skobeltsyn Institute of Nuclear Physics

CORONAS – F gave us new results on:

- SEP generation during solar flares;

- SEP penetration;- dynamics of proton and electron radiation belts.

Galactic cosmic rays

Earth’s Radiation Environment

299 300 301 302 303 304 305 306 307 308 309

Д н и 2 0 0 3

1E-4

J(p>

700М

эВ)

7000

8000

9000

10000

N/1

00/ч

(S. P

.)0.02

0.03

0.04

J(p>

75М

эВ)(

L=1.

5)

0.030.040.050.060.070.08

J(p>

75М

эВ)(

L=2)

1E-1

1E+0

J(p>

75М

эВ)(

L=2.

5)

1E-1

1E+0

J(p>

75М

эВ)(

L=3)

N (S .P .) p > 7 0 0 М эВ

L=1.5

L=2

L=2.5

L=3

Cosmic rays inside the magnetosphere

Oct-Nov’03 event :

-SEP: increasing;

-Forbush effect up to ~ 30%

-Semiduirnal variations up to ~10-15 %.SP NM

GOES

Coronas-F

GCR:

Solar energetic particles

Earth’s Radiation Environment

SEP radiation storm• Acceleration at solar flare site;

• Propagation in IPM with modulation, acceleration by CME shocks;

• Penetration inside the magnetosphere and

partial trapping(?)

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

Час

тицы

/ с

см^

2 с

р

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5Ч

асти

цы /

с с

м^2

ср

26 27 28 29 30 31 01 02 03 04

p3

p2

О к тя б р ь - н о я б р ь 2 0 0 3 U T

Ю

С

Ю

С

2,3-4,2 MeV/nucl

4,4-19 MeV/nucl

H

He

H

HeShort time delay,quick-time

front, large anisotropy and absence of dispersion

(during ~12 h). Λ is large

AR 484

Oct. – Nov.’03CORONAS-F data

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

Час

тицы

/ с

см^

2 с

р

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

Час

тицы

/ с

см^

2 с

р

26 27 28 29 30 31 01 02 03 04

p3

p2

О к тя б р ь - н о я б р ь 2 0 0 3 U T

Ю

С

Ю

С

2,3-4,2 MeV/nucl

4,4-19 MeV/nucl

H

He

H

HeFree particles propagation

withmodulation by a shock wave

AR 486

XRS Data

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

28 Oct 29 Oct 30 Oct 31 Oct 01 Nov

Date

G12

Xra

ys .

1-.8

A

X

M

B

C

Oct. – Nov.’03CORONAS-F data

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

Час

тицы

/ с

см^

2 с

р

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

Час

тицы

/ с

см^

2 с

р

26 27 28 29 30 31 01 02 03 04

p3

p2

О к тя б р ь - н о я б р ь 2 0 0 3 U T

Ю

С

Ю

С

2,3-4,2 MeV/nucl

4,4-19 MeV/nucl

H

He

H

He

2 –days flux increase, diffusion propagation,

Λ is extermely small

AR 486

XRS Data

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

28 Oct 29 Oct 30 Oct 31 Oct 01 Nov

Date

G12

Xra

ys .

1-.8

A

X

M

B

C

Oct. – Nov.’03CORONAS-F data

October- November’03 radiation storm CORONAS-F / solar gamma-rays,neutrons

The first phase Shock-wave acceleration

The second – delayed phase Pion-decay production

18.0 18.5 19.0 19.5 20.0 20.5 21.0D ay o f January

1E-1

1E+0

1E+1

1E+2

1E+3P

(50-

90 M

eV),1

/s C

OR

ON

AS

-F

1E-3

1E-2

1E-1

1E +0

1E +1

1E +2

1E +3

P>5

0 M

eV G

OE

S-1

0

GOES-10 p>50 MeV

CORONAS-F p 50-90 MeV

Тatiana

radiation storm 20.01.05Tatiana

06:44 06:48 06:52 06:560

3000

6000

9000E 0.15-0.5 MeV

E 60-100 MeV

Time, UT hh:mm

0

5

10

15

20Phase IIPhase I

Две фазы вспышки в - излучении. Tatiana radiation storm CORONAS-F / solar gamma-rays,neutrons

Gamma –rays with > 60 MeV as a result of interactions of > 200 MeV protons

SEP penetration

October- November’03 Radiation StormSEP penetration at low altitudes

– low-latitude boundary of

SEP penetration

b

Satellite’s orbit

SEP

Transmission function during quiet/stormymagnetosphere

Effective rigidity of penetrating particles decreases during magnetic storm periods

b

SEP penetration at low altitudes300 301 302 303 304 305 306 307 308

Д н и 2 0 0 3

1.5

2.0

2.5

3.0

3.5

L

-1 .70

-1 .60

-1 .50

-1 .40

-1 .30

-1 .20

-1 .10

-1 .00

-0 .90

-0 .70

-0 .50

-0 .30

-0 .10

-0 .00

0.10

299 300 301 302 303 304 305 306 307 308 309Д н и 2 0 0 3

-400

-300

-200

-100

0

Dst(н

T)

3

4

5

6

7

L

October- November’03 Radiation Storm

October- November’03 Radiation StormSEP penetration at low altitudes

50

60

70

Инв

. шир

ота

О к т я б р ь - Н о я б р ь 2003

0

200

400

Kp

Kp- dependence

Evening

October- November’03 Radiation StormSEP penetration at low altitudes

50

60

70

Инв

. шир

ота

О к т яб р ь - Н о я б р ь 2003

N SГ р а н и ц ы п р о н и к н о в ен и я С К Л (р : 4 .4-19 М эВ ) в п о л я р н ы е ш а п к и в в еч ер н и е ч а сы : ,

-400

-200

0

Dst

Dst -dependence

Evening

October- November’03 Radiation StormSEP penetration at low altitudes

0 30 60 902

4

6

0 30 60 9010Kp

3

6

93

6

9

12

15

3

6

9

6

12

18

24

30

L

6121824303642L

M L T = 6 -9 ч M L T = 1 8 -2 1 че (0 .3 -0 .6 М эВ )

р (1 -5 М эВ )

р (5 0 -9 0 М эВ )

MLT - dependence

-400 -300 -200 -100 0D st(н Т )

3

6

9

-400 -300 -200 -100 02

4

6

3

6

9

3

6

9

12

15

6

12

18

24

30

36

42L

6

12

18

24

30

L

Morning Evening Morning Evening

Kp Dst

Neither Kp or Dst indexes are not representative

for a global distributionof SEP penetration

October- November’03 Radiation StormSEP penetration at low altitudes

Coronas-Fdata, Skobeltsyn Institute of Nuclear Physics

Variation of proton penetration boundary during isolated substorm

Substorm activity as

a regulator of SEP’s

penetration

Radiation belts

Earth’s radiation environment

October- November Radiation Storm

Electron radiation belts

Radiation belt dynamics

Dynamics of relativistic electron belts

October- November Radiation Storm

Coronas-F data, Skobeltsyn Institute of Nuclear Physics

Energetic electrons & protons dynamics /Coronas F data

Redistribution plus acceleration of energetic radiation inside

the traping region

Oct.,29

Oct.,28

Electron radiation belts

Inward movement of RB

300 301 302 303 304 305 306 307 308 309 310Д н и 2 0 0 3 г .

L

lgJe(0

.3-0.6

МэВ

)

L

lgJe(0

.6-1.5

МэВ

)

L

lgJe(1

.5-3М

эВ)

8.5

4.0

2.4

1.7

1.3

1.18.5

4.0

2.4

1.7

1.3

8.5

4.0

2.4

1.7

1.3

1.1

1.1

Electron belt variations

300 301 302 303 304 305 306 307 308 309 310Д н и 2 0 0 3 г .

-400

-300

-200

-100

0

Dst(н

Т)

3 phases:

SEE injection,depletion,

thennew RB formation

SEP trapping

Ejection of SEP inside the RB really exists 

 

 

Solar energetic particles as a source of RB population

10 MeV protons There are some doubts that this source is important for the quiet-time structure of

the RB

 

Solar energetic particles as a source

of RB populationOne should expect the life-time of SEP particles to be very small because of their high rigidity (see Alfven criteria).

Therefore, the probability of observing SEP particles inside the RB is small

Criteria for stable trapping: 

L/M ~ LB/B= <<1

L - larmour radius, M –magnetic field line curvature, B - magnetic field magnitude

2 3 4 5 6 7 8 91 10L

1E-1

1E+0

1E+1

1E+2

1E+31E-1

1E+0

1E+1

1E+2

1E+3

1E+4J (с м 2 ср * с )-1

06.1105.11

07.11

12.11

p (1 -5 М эВ )

р (1 4 -2 6 М эВ )

С П

Proton belt variations

2 3 4 5 6 7 8 91 10L

1E-1

1E+0

1E+1

1E+2

1E+31E+0

1E+1

1E+2

1E+3J (с м 2 с р * с )-1

23.1125.11

30.11p (1 -5 М э В )

р (1 4 -2 6 М эВ )

С П

The new proton belts

6-12.11.03 23-30.11.03

Impulsive acceleration or nonadiabatic process?

> 1MeV

>14 MeV

300 301 302 303 304 305 306 307 308 309 310Д н и 2 0 0 3 г .

L

lgJ(

e>1.

6;p>

23М

эВ)

L

lgJp

(14-

26М

эВ)

L

lgJр

(1-5

МэВ

)

4.0

2.4

1.7

1.3

1.14.0

2.4

1.7

1.3

1.18.5

4.0

2.4

1.7

1.3

1.1

Proton belt variations

300 301 302 303 304 305 306 307 308 309 310Д н и 2 0 0 3 г.

-400

-300

-200

-100

0

Dst

(нТ

)

2 phases:

-SEP injection, then-new proton belt formation

300 301 302 303 304 305 306 307 308 309 310Д н и 2 0 0 3 г .

L

lgJ(

e>1.

6;p>

23М

эВ)

L

lgJp

(14-

26М

эВ)

L

lgJр

(1-5

МэВ

)

4.0

2.4

1.7

1.3

1.14.0

2.4

1.7

1.3

1.18.5

4.0

2.4

1.7

1.3

1.1

Proton belt variations

300 301 302 303 304 305 306 307 308 309 310Д н и 2 0 0 3 г.

-400

-300

-200

-100

0

Dst

(нТ

)

3 phases:-SEP injection,-depletion, then-new proton belt formation

Geostationary radiation storms

vs LEO polar

radiation storms

298 302 306 310 314 318 322 326 330D O Y 2003

1E -1

1E +0

1E +1

1E +2

1E +3

1E +4

1E +5

1E +6

1E +7P

roto

n flu

x 1/

(cm

**2

s sr

)

C O R O NAS-F

p1-5 M eVp 14-26 M eV

p 50-90 M eVp 26-50 M eV

-500

-400

-300

-200

-100

0

Dst

Coronas-F

Daily averaged data

298 302 306 310 314 318 322 326 330D O Y 2003

1E -2

1E-1

1E+0

1E +1

1E+2

1E+3

1E +4

1E+5

1E+6

1E +7П

оток

и пр

отон

ов, 1

/(cм

**2

с ср

)

-500

-400

-300

-200

-100

0

Dst

p 14-26 C O RO NAS-F

L<2.5L 2.5-10L>10

GOES Inner zone

Solar protons cause radiation storms at LEO

Intensity of radiation storm at LEO polar orbits on daily averaged time scale is mainly dependent on SEP penetration

at low latitudes than on effects of RB’s particles redistribution or (and)

acceleration at low latitudes

SEP doses effects

October- November Radiation StormISS dosimetry

ISS/SRC,R16 data,

SINP, IMBP

October- November Radiation StormISS dosimetry

ISS/SRC,R16 data,

SINP, IMBPR16

DB-8

October- November’ 03 vs October’ 89 Radiation Storms: ISS/R16 data

October,03

Solar particles dose effect : 140mrad

ISS

October- November’ 03 vs October’ 89 Radiation Storms: ISS/R16 data

October,89

October,03

Solar particles dose effect : 140mrad

ISS

October- November’ 03 vs October’ 89 Radiation Storms: ISS/R16 data

October,89

October,04

Solar particles dose effect (total): 3070mrad

Solar particles dose effect : 140mrad

ISS

MIR

0

5

10

15

20

25

30

35

40

0 90 180 270 360Долгота восходящего узла орбиты, градус

Доза

за

сутк

и, м

Грей

.

SPE oct 28SPE oct 29

Calculated ISS doses vs initial orbital parameters

Oct., 28, 2003

Longitude

Dose

DB-8 detector onboard ISS

Conclusions

• SEE for LEO:-Intensification of electron component of RB &-Enhancement of proton (ion) fluxes due to

SEP penetration

Thank you

The new proton belt formation

Polar LEO flux

GEO fluxDst

Polar LEO radiation storm at low latitudes

298 302 306 310 314 318 322 326 330D O Y 2003

1E -2

1E-1

1E+0

1E +1

1E+2

1E+3

1E +4

1E+5

1E+6

1E +7

Пот

оки

прот

онов

, 1/(c

м**

2 с

ср)

-500

-400

-300

-200

-100

0

Dst

p 1-5 C O R O N AS-F

L<2.5L 2.5-10L>10

Inner zone

Solar protons

GOES

Daily averaged

Conclusions

1.Solar extreme events (SEE) can really cause the drastic

changes in the earth’s radiation environment, but

their value depends on their geoefficiency

Bengin,et al,1992

Mir doses during the solar flares

Doses increased in severaltimes because of penetration

of SEP at LEO.

Kp

«Mir» data

October 19, 1989 :

ISS doses during Oct.- Nov.’ 03

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

28 î êò 03 29 î êò 03 30 î êò 03 31 î êò 03 01 í î ÿ 03Time

Accu

mul

ated

dos

e, m

Gra

y .

Meassured data

CORONAS_&_L

CORONAS_&_Dst

GOES_&_L

GOES_&_Dst

LEO – GEO measurements disageement ?

top related