radicals in asymmetric synthesis : formation of tertiary and quaternary carbon centers using acyclic...

Post on 13-Jan-2016

260 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals

Christiane Grisé

University of Ottawa

November 3, 2005

2

Radical Chemistry

(CH2-CH2)n

Polyethylene

CH2-CHPh

Polystyrene

HBr +RO-OR Br

I+ CN

Bu3SnHAIBN

CN

IS STEREOSELECTIVITY POSSIBLE WITH ACYCLIC RADICALS???

a

bc

d+

d

ab c

d

ac b

+SnBu3H

3

Outline

1. Basic concepts of radical chemistry

2. Description of asymmetric methods

ASYMMETRIC SYNTHESIS USING ACYCLIC RADICAL

Substrate-controlled Chiral auxiliary Chiral reagent

4

Radical Chain Reaction Mechanism

2. Propagation

Br +Br

+ H-BrBr

+ Br

3. Termination2 Br Br Br

+Br

Br

Br Br

Br2

Br Br

a) b)

c)

1. Initiation

Ph

O

OO

O

Ph60-80 °C

Ph

O

O2

Ph H-Br Ph H + Br

+ 2 CO22 Ph

HBr +RO-OR Br

5

Initiation Dibenzoyl peroxide (60-80 °C) AIBN (azoisobutyronitrile)

Derivative of AIBN developed for reactions at room temperature

(V-70)

Et3B : Initiator at -78 °C

Inorganic compounds : ZnCl2, SmI2 and other transition metals (Mn, Ni, Cu, Fe)

NC NN CN

CN2 + N2

66-72 °C

R3B + O2 + RR2BOO

NN CN

CN OMeMeO

6

Propagation – Types of Reactions Abstraction

Addition

Fragmentation

Rearrangement

R1 + X-R2 R1-X + R2

R1 + Non-radical R2

R1 Non-radical + R2

R1 R2

+ Br-R Bu3SnBr + R

R + H-SnBu3 R-H + Bu3Sn

Bu3Sn

R + CN CNR

R + SnBu3 R + Bu3Sn

7

Radical Stability

Can predict radical stability by looking at the bond dissociation energy

Alkyl radical : tertiary>secondary>primary Conjugating groups also stabilize radicals

Both electron-withdrawing and electron-donating groups stabilize radicals

O

N OEt

X Y X + Y G

8

Explanation by Frontier Molecular Orbitals

Radicals have Singly Occupied Molecular Orbitals (SOMO) Most radicals are uncharged and are considered soft species

Oex.

SOMOradical(p orbital)

*

Stabilizationenergy

OEt

SOMOradical(p orbital)

n orbital

9

Reactivity and Frontier Molecular Orbitals

O

OEtex.

Low energySOMO

HighenergySOMO

HOMO

LUMO

HOMO

LUMO

strong

strong

Electrophilic radical Nucleophilic radical

10

Radical Addition to α,β-Unsaturated Compounds

HighenergySOMO

HOMO

LUMO

O

OMe

O

OMe

O

OMe

• Nucleophilic radical

• Orbital interactions are important

• Size of coefficient explains the regioselectivity

O

OMe

+ O

OMe

11

Stereoselectivity and Radicals

N

SO O

CO2MeO

SnBu3

AIBN, 80 °C

93 % N

SO O

CO2MeO

Br

Cyclic radicals : The anti Rule

Acyclic radicals : substrate controlled, chiral auxiliaries and chiral reagents

a

bc

d+

d

ab c

d

ac b

+SnBu3H

12

Substrate Control : Ester Substituted Radicals

R1

OR O

OMeH Br

SnBu3DOR O

OMeR2

SnBu3D

R1

OR O

OMeR3

OR O

OMeR2 D

R2= H or alkyl

A B C

D FE

H R1

OR

CO2MeR2RO H

R1

CO2MeR2R1 OR

H

CO2MeR2

H R1

OR

R2MeO2CRO H

R1

R2MeO2CR1 OR

H

R2MeO2C

13

Important Factors for Diastereoselective Reduction

Delocalization of the radical with the adjacent ester Minimization of 1,3-allylic strain Dipole-dipole repulsions are decreased Stabilization by hyperconjugation

PhCO2Me

OMe

Me Br

HSnBu3

Initiator PhCO2Me

OMe

MePh

CO2MeOMe

Me

HSnBu3

CO2EtMe CO2Et

H

Me

Ph

MeO H

Ph

MeO H

Transition state :

90 % yield32 : 1

Guindon, Y.; Yoakim, C.; Gorys, V.; Ogilvie, W.W.; Delorme, D.; Renaud, J.; Robinson, G.; Lavallée, J.-F.; Slassi, A.; Rancourt, J.; Durkin, K.; Liotta, D. J. Org. Chem. 1994, 59, 1166. Guindon, Y.; Slassi, A.; Rancourt, J.; Bantle, G.; Bencheqroun, M.; Murtagh, L.; Ghiro, E.; Jung, G. J. Org. Chem. 1995, 50, 288.

14

Effect of Substituents on Diastereoselectivity

RO

R1Me X

CO2MeSnBu3H

OCO2Me

Me Me

O O

Ph H

CO2tBu

Me

OMeMeO CO2Me

Me

OO

Me

CO2tBu

Me

RO

R1CO2Me

MeX= Br, I or SePh

TolueneBEt3-78°C

52:1 2:1 43:1 >100:1

Guindon, Y.; Faucher, A-M.; Bourque, E.; Caron, V.; Jung, G.; Landry, S. J. Org. Chem. 1997, 62, 9276.

15

The Exocyclic Effect

RO

R1CO2MeMe

Definition1 : Increased diastereoselectivity demonstrated by the reactions of a radical adjacent or exo to a ring formed by tethering the β-heteroatom to the R1 substituent in the

radical shown :

1 Guindon, Y.; Faucher, A-M.; Bourque, E.; Caron, V.; Jung, G.; Landry, S. J. Org. Chem. 1997, 62, 9276.

H

MeO

MeH

HCO2MeMe

HSnBu3

H

MeO

MeH

HCO2MeMe

HSnBu3

O

MeH

HCO2MeMe

HSnBu3

O

MeH

H

CO2MeMe

HSnBu3

ANTI

SYN

16

Lewis Acid Can Reverse Diastereoselectivity

O MOMe

OR1

R2

HSnBu3

R1H

OR2

Me

OMeO

M

R2

HMeOCO2MeR1

HSnBu3

HSnBu3 H

R1 CO2MeR2

HMeO

Acyclic control :

Lewis acid :

Lewis acid : MgI2, MgBr2-OEt2, AlCl3

R2 CO2MeOMe

R1

Anti

R2 CO2MeOMe

R1

Syn

H

R2

OMe

CO2Me

H

R1

Endocyclic effect

Guindon, Y.; Lavallée, J.-F.; Llinas-Brunet, M.; Horner, G.; Rancourt, J.

J. Am. Chem. Soc. 1991, 113, 9701.

17

Exocyclic vs Endocyclic Effect

O

MeH

HCO2

tBuMeM

NEt

CO2tBu

ON

Me

Et M

Me

CO2tBu

OH

SePhMe

NH

Me

Et

CO2tBu

OHNH

Me

Et

Me

AdditiveExocyclic

SnBu3H

MO

OMe

OtBu

HN

Et MeH

ONH

Me

EtO

OtBu

M

Me

CO2tBu

OHNH

Me

Et

Me

Lewis acid Endocyclic

SnBu3H

Reagent Anti:Syn

Me2SiCl2 100:1

Ph2SiCl2 85:1

Me2BBr 22:1

Bu2BOTf 32:1

MgBr2-OEt2 1:3

18

Synthesis of Proprionate Motif Using Radicals

OR

Me

OH

Me

O

OMe

OR

Me

OH

Me

O

OMe

OR

Me

OH

Me

O

OMe

OR

Me

OH

Me

O

OMe

2

3

4n n

n n

Diastereoselective Mukaiyama and Free-Radical Hydrogen Transfer

OR O

HMe

nMe

X

OSiMe3

OMe

OR

Me

OH

Me

O

OMen

X = SePh or Br

* **

*

1) Guindon, Y.; Houde, K.; Prévost, M.; Cardinal-David, B.; Landry, S.R.; Daoust, B.; Bencheqroun, M.; Guérin, B. J. Am. Chem. Soc. 2001, 123, 8496.2) Guindon, Y.; Prévost, M.; Mochirian, P.; Guérin, B. Org. Lett. 2002, 4, 1019.

19

Mukaiyama Reaction

R

O

H R3R2

R1 OSiMe3

R

OH O

R3

R1 R2+

Lewisacid

O

HMe

OP

R3R2

R1 OSiMe3

+

Bidentate L.A.

Monodentate L.A.

Me H

OPO

H Enol

L.A.OH O

R3

R1R2

OP

Me

Me

H

O

HEnol

L.A.

OP

OH O

R3

R1R2

OP

Me

Cram chelate

Felkin-Ahn

20

Tandem Mukaiyama/Hydrogen Transfer :Endocyclic Effect

O

HMe

OP

OMeX

Me OSiMe3

+

OH O

OMeMe

X

BnO

Me

OH O

OMeMe

X

TBDPSO

Me

MgBr2-OEt2

Me2AlCl

Bu3SnHEt3B

Bu3SnHEt3B

OH O

OMeMe

OBn

Me

OH O

OMeMe

TBDPSO

MeX = Br, SePh

70%Ratio 30:1

66%Ratio 11:1

2

3

4

1

2

Endocyclic effect :

O O

OMeMe

X

BnO

Me

L.A.O O

OMeMe

X

BnO

Me

L.A.

Bu3SnH H

BnO

OMe

OMe

OL.A.

Me

HSnBu3

21

Tandem Mukaiyama/Hydrogen Transfer :Exocyclic Effect

O

HMe

OP

OMePhSe

Me OSiMe3

+

OH O

OMeMe

X

BnO

Me

OH O

OMeMe

X

TBDPSO

Me

BF3-OEt2

Bu3SnHEt3B

Bu3SnHEt3BCH3COOH

OH O

OMeMe

OBn

Me

OH O

OMeMe

TBDPSO

Me

81 %Ratio 20:1

64 %Ratio 11:1

Et2BOTf2

3

4

3

4

O

Exocyclic effect :

Bu3SnH

Me CO2Me

HSnBu3O

CO2Me

MeX

TBDPSO

Me

BF3-OEt2 Et3BCH3COOH O

CO2Me

MeX

PO

Me

BEtH

PO

EtB

MeH

22

Advantages to the Mukaiyama/Hydrogen Transfer Reaction

E/Z stereochemistry of the enoxysilane is unimportant With appropriate Lewis acid selection, all 4 proprionate

units are accessible Conditions were found for one-pot procedure Iterative process was demonstrated with the synthesis of

the polyproprionate motif :

1) Mochirian, P.; Cardinal-David, B.; Guérin, B.; Prévost, M.; Guindon, Y. Tet. Lett. 2002, 43, 7067.

2) Guindon, Y.; Brazeau, J-F.; Org. Lett. 2004, 4, 2599.

OBnOBnO

HMeMe

TiCl4 OBnOBnOH

MeMeBr OMe

OSiMe3

Me

O

OMeBr

Et2BOTfSnBu3H

OBnOBnOH

MeMe

O

OMeMe

77 %, 100:1 83 %, 20:1

23

Application to the Synthesis of Zincophorin

OHO2C

HMe

HMe

MeOH OH

Me Me

OH

Me

MeMeMe

OH

Zincophorin

1) Guindon, Y.; Murtagh, L.; Caron, V.; Landry, S.R.; Jung, G.; Bencheqroun, M.; Faucher, A.-M.; Guérin, B. J. Org. Chem. 2001, 66, 5427.2) Guindon, Y.; Mochirian, P. Unpublished results.

OH

Me

Me

Me Me

OP OP OP

CHOMeO2C

HMe

BtO2SMe

OP

Me Me

Me

+

Me Me Me

OBnOBnOBnMeO2C

Bt = benzothiazole

24

Can this Methodology be Applied to Other Free Radical Reactions?

PhCO2Me

OMe

Me I

MgBr2-OEt2

allylBu3Sn Et3B Ph

CO2MeOMe

MeO H

PhMe

Me

MeOO

Mg

Bu3Sn

ENDOCYCLIC :

PhCO2Me

OMe

Me IallylBu3Sn Et3B

R1 = H, Me

Ph

H OMeMeMeO2C

Bu3Sn

ACYCLIC STEREOCONTROL :

PhCO2Me

OMe

Me

76 %>100:1

75 %1:16

25

Synthesis of Tertiary and Quaternary Centers

O

HMe

OP

OMeX

R OSiMe3

+

Bidentate L.A.

OH O

OMeR X

OP

Me

R = H or MeX = Br or SePh

SnBu3

Endocyclic

Exocyclic

OH O

OMeR

OP

Me

OH O

OMeR

OP

Me

5

6

Monodentate L.A. OH O

OMeR X

OP

MeR = H or MeX = Br or SePh Exocyclic

Endocyclic

SnBu3

OH O

OMeR

OP

Me

OH O

OMeR

OP

Me

7

8

OMeX

R OSiMe3O

HMe

OP O

HMe

OP

Cardinal-David, B.; Guérin, B.; Guindon, Y. J. Org. Chem. 2005, 70, 776.

26

Tandem Mukaiyama and Allylation Reactions (Endocyclic Effect)

O

HMe

BnO

OMePhSe

R OSiR'+

HO O

OMeR

BnO

Me

11, R=H, R'=Et312, R=Me, R'=Me3

1. MgBr2-OEt22. CH3COOH Me2AlCl3. AllylSnBu3Et3B, O2, CH2Cl2 13, R=H 85 % (>20:1)

14, R=Me 52 % (>20:1)

O

HMe

TBDPSO

OMePhSe

R OSiR'+

11, R=H, R'=Et312, R=Me, R'=Me3

1. Me2AlCl2. AllylSnBu3Et3B, O2, CH2Cl2

15, R=H 40 % (10:1)16, R=Me 55 % (14:1)

OH O

OMeR

TBDPSO

Me

1. Cram chelate

2. Felkin-Ahn

27

Future Work : 2,3-syn Products

O

HMe

OP

Bidentate L.A.

OH O

OMeR X

OP

Me

R = H or MeX = Br or SePh

SnBu3

Endocyclic

Exocyclic

OH O

OMeR

OP

Me

OH O

OMeR

OP

Me

OMeX

R OSiMe3

Monodentate L.A. OH O

OMeR X

OP

MeExocyclic

Endocyclic

SnBu3

OH O

OMeR

OP

Me

OH O

OMeR

OP

Me

+

5

6

7

8

28

Summary – Substrate Control

Important factors for stereoselective radical reactions: allylic strain, dipole-dipole interactions, hyperconjugation, exocyclic effect and endocyclic effect

Combination of stereoselective Mukaiyama and radical reduction or allylation produced a powerful method to generate polyproprionates, tertiary and quaternary centers

SnBu3HO O

Ph H

CO2tBu

MeX= Br, I or SePh

TolueneBEt3-78°C 43:1

O O

Ph H

CO2tBu

MeX

PhCO2Me

OMe

Bri-Pr

MgBr2-OEt2Bu3SnHEt3BCH2Cl2

PhCO2Me

OMe

i-Pr84:171 % yield

OR O

HMe

nMe

X

OSiMe3

OMe

OR

Me

OH

Me

O

OMen

X = SePh or Br

* **

*

OR O

HMe

nR

X

OSiMe3

OMe

OR

Me

OH

R

O

OMen

X = SePh or BrR = Me or H

* ** *

29

Chiral Auxiliaries

O

N

O

N

N

ON

Ot-BuHgBrNaBH4

O

N

O

N

t-Bu H

[98.8 : 1.2]

2,5-dimethylpyrrolidine : Porter and Giese (1991)

O

N

MeO2C

MeO2C

ON

O

NO

O

N O

MeO2C

MeO2C

R

Other auxiliaries :

40-70 %

30

Oxazolidinone Chiral Auxiliary

Yamamoto and co-workers (1994)

Sibi and co-workers (1995)

O N

OO

Ph

Ph

R i-PrI, Bu3SnHLewis acidEt3B/O2, -78°C

O N

OO

Ph

Ph

R

Lewis acid Yield Ratio

ZnCl2 70 9:1

MgBr2 90 20:1

Yb(OTf)3 89 45:1

O N NH

OO SnBu3

ZnCl2-OEt2 O N NH

OO85 %[87:13]

CO2Me

Br

CO2Me

31

Selectivity with N-Enoyloxazolidinone

O N

OO

Ph

Ph

R

O N

OO

Ph

Ph

R

O N

OO

PhPh

O N O

O

Ph

Ph

R

A B C

Lewis acid

O N

OO

Ph

Ph

R

LA

NO

O

OLA

H

H

RTop face addition

i-PrISnBu3H

R O N O

O

Ph

Ph

R

D

32

Application to the Synthesis of (-)-Enterolactone

O N

O

CO2Et

O

PhPh

Sm(OTf)3

BrMeO

CH2Cl2/THFBu3SnH, Et3B/O2-78 C°

O N

O

CO2Et

O

PhPh

OMe

71 %

1. NaHMDS, THF3-OMeC6H4-CH2I, 50 %2. LiOH/H2O2, 88 % HO

O

CO2Me

OMe

OMe

1. BH3/THF2. PPTS78 % (2 steps)3. BBr388 %

O

O

OH

OH

(-)-EnterolactoneNO

O

O

H

CO2MeR

Na

IR

R= CH2-(3-OMe)C6H4Sibi, M.P.; Liu, P.; Ji, J.; Hajra, S.; Chen, J.-x. J. Org. Chem. 2002, 67, 1738.

33

Camphorsultam Auxiliary and Radical-Ionic Reactions

SO2

N

ONOBn

i-PrIPhCHOMe3Al, Et3BCH2Cl2, reflux

OO

i-Pr

Ph

NOBn

O

BnHNNHOBn

Ph OH

Et

OO

Et

Ph

NOBn

1. BnNH2, 2-pyridinol2. NaBH3CN, HCl

61 %, 2:1

Ueda, M.; Miyabe, H.; Sugino, H.; Miyata, O.; Naito, T. Angew. Chem. Int. Ed. 2005, 44, 2.

γ amino acid

34

Mechanism

SN

ONOBn

O

O

BEt

Et Et

NBEt2O

PhH

AlMe3OBnH

H

i-Pr

O

X

Et

i-PrI

+ EtI

SO2

N

ONOBn

PhCHO

O Ph

Et2B

H

SO2

N

ONOBnBEt2

OO

i-Pr

Ph

NOBn

35

Summary : Chiral Auxiliaries

Chiral oxazolidinone are very useful for diastereoselective conjugate addition

Camphorsultam auxiliary used for radical addition/aldol type reaction

Importance of the Lewis acid

O N

OO

Ph

Ph

R O N

OO

Ph

Ph

RLewis acid

NO

O

OLA

H

H

R

i-PrISnBu3H

36

Enantioselective Free Radical Reactions

Wu, J.H.; Radinov, R.; Porter, N.A. J. Am. Chem. Soc. 1995, 117, 11029.

R-I +O

N O

O+

SnBu3 Zn(OTf)2

Et3B-78 °C

ON N

O

Ph Ph

R N

92 %ee : 90 %

O

O O

Porter and co-workers (1995)

37

Mechanism-Propagation

R O

N O

O

L2Zn

SnBu3

R NO

O O+ SnBu3

RX

R + XSnBu3

O

N O

O

ON N

O

Ph PhZn

R

38

Enantioselective Conjugate Addition

O

N O

O MgI2

-78 °C

ON N

O

iBu iBu88 %ee : 82 %

Ph+ i-PrI Bu3SnH

O

N O

O

Ph

Ligand 11

Sibi and Porter (1996)

Sibi, M.P.; Ji, J.; Wu, J.H.; Gürtler, S.; Porter, N.A. J. Am. Chem. Soc. 1996, 118, 9200.

O

N O

OMgI2

-78 °C

Ph+ i-PrI

Bu3SnH

O

N O

O

PhEt3B/O2

Ligand 294 %ee : 97 %

ON N

O

2

Sibi, M.P.; Ji, J. J. Org. Chem. 1997, 62, 3800.

Sibi (1997)

39

Application : Synthesis of (+)-Ricciocarpin A

O

NO

O

OBn

BrCl

MgI2, Bu3SnHEt3B/O2

O

NO

O

OBn

Cl

84 %, (97 % ee)O

N N

O

1. Sm(OTf)3 CH3OH (95%)2. NaI, acetone (98 %)

O

MeO OBn

I LHMDS-78 to RT(97 %)

OMe

H

HO

OBn

1. Pd(OH)2/H2, Hex/EtOAc2. TEMPO, KBr, NaOCl, std. NaHCO3 (76 % over two steps)

OMe

H

HO

OH

O

H

HO

O

O

Ti(OiPr)3

85 %[5.7:1]

Sibi, M.P.; He, L. Org. Lett. 2004, 6, 1749.

O

H

HO

O

40

Scope of the Conjugate Addition

ON N

O

O

NO

O cat. MgI2

-78 °C

Ph + i-PrIAllylSnBu3

O

NO

O

PhEt3B/O2

93 %dr : [37:1]ee : 93 % 1

Ligand 1

ON N

OO

NO

O MgI2

-78 °C

OCOPh+ i-PrI O

NO

O

OEt3B/O2

90 %ee : 93 % 2

Ligand 2

Bu3SnH

Ph

O

Sibi, M.P.; Chen, J. J. Am. Chem. Soc. 2001, 123, 9472.Sibi, M.P.; Zimmerman, J.; Rheault, T. Angew, Chem. Int. Ed. 2003, 42, 4521.

41

Limitation of the Oxazolidinone Template

ON N

O

O

NO

O cat. MgI2

-78 °C

Ph + i-PrIAllylSnBu3

O

NO

O

PhEt3B/O2

93 %dr : [37:1]ee : 93 % 1

Ligand 1

No substituent

O N

OO

R2 O N

OO

A B

R1

R1

R2

LA LA

42

New Imide Template for Conjugate Addition

O

NH

Ocat. MgI2

-78 °C

Me Bu3SnH

O

NH

O

Et3B/O2

Ligand 1

+ i-PrI

Me

Me

Me

ON N

O

79 %dr : [99:1]ee : 92 % 1

X MgN

OO

X

N

O

NHMe

Me

OO

NH

O Me

Me

HMeMe

O

NO

Mg2+

HHSnBu3

Mg2+

Sibi, M.P.; Petrovic, G.; Zimmerman, J. J. Am. Chem. Soc. 2005, 127, 2390.

79 %dr : [99:1]ee : 92 %

43

Acyclic Radicals and Asymmetric Synthesis

Substrate control

Chiral auxiliary

Chiral lewis acids

O O

Ph H

CO2tBu

Me

PhCO2Me

OMe

i-Pr

OR

Me

OH

Me

O

OMen*

* *

OR

Me

OH

R

O

OMen*

* *

R= H or Me

O N

OO

Ph

Ph

R

OO

iPr

Ph

NOBn

O

NO

O

Ph

O

NO

O

O

Ph

O

O

NH

O Me

Me

O

NO

O

Ph

44

Acknowledgements Prof. Louis Barriault Nathalie Goulet Guillaume Tessier Steve Arns Effie Sauer Maxime Riou Rachel Beingessner Roch Lavigne Patrick Ang Louis Morency Mélina Girardin Maude Boulanger Jeff Warrington Lise-Anne Prescott Josée-Lyne Ethier Tushar Tangri

Dr. Irina Denissova and Philippe MochirianFrom Professor Yvan Guindon’s group

45

46

Ester substituted radicals and allylic strain

H

X R1

CO2Et

R2X

R2

HCO2EtR1

O

OEtR1

R2

X

Minimize allylic strain

Side of attack

depends on

R1, R2 and XH

MeH H

HMe

MeMe

H H

HMe

Me

Allylic strain : Control of a conformation by a cis substituent

In alkenes :

Eclipsed form is lowest in energy

Giese, B.; Bulliard, M.; Zeitz, H.-G. Synlett 1991, 425.

47

Dipole-dipole interactions are also important

PhBr

CO2EtX

Bu3SnPh

CO2EtX

Bu3SnHPh

CO2EtX

H

HSnBu3

CO2EtMe

PhCO2Et

X

H

Me CO2Et

HSnBu3

CO2Et

Me CO2Et

H

PhCO2Et

X

Me

anti syn

Ph

X H Ph

XH

Ph

X HPh

XH

A B

X

F

MeOMe

anti:syn66 : 3497 : 395 : 5

48

Hyperconjugation and selectivity

OYX

Me I

CO2Me

R

SnBu3H

OHN

CO2Me

Me Me

O

OO

CO2Me

Me Me

O

OYX CO2Me

R Me

OCO2Me

Me Me9:1 2:1 52:1

ANTI SYN

N

O

O

HMe

H

H

CO2MeMe

N

O

O

H MeH

HCO2MeMe

49

Diastereoselective Radical Addition/Allylation

RX Lewis acid Yield Ratio

MeI MgBr2 82 >100:1

i-PrI MgBr2 85 >100:1

C6H11I MgBr2 93 >100:1

MeOCH2Br Yb(OTf)3 70 58:1

PhCOBr MgBr2 90 50:1

O N

OO

Ph

Ph

O N

OO

PhPh

R

MgBr2 or Yb(OTf)3RX, AllylSnBu3CH2Cl2, Et3B/O2-78 °C

Sibi, M.P.; Ji, J. J. Org. Chem. 1996, 61, 6090.

50

Mechanism

NO

O

OLA

H

HR

Syn

SnBu3

O N

OO

Ph

Ph

Et3B + O2 Et

Et + RX R + EtX

RO N

OO

Ph

Ph

R

SnBu3

O N

OO

PhPh

R + SnBu3

RX

1)

2)

3) R2x R-R

51

Sequential Mukaiyama and Allylation Reactions – Endocyclic Effect

Low yield for allylation with MgBr2-OEt2 (62 %) compared to Me2AlCl (90 %) or AlMe3 (80 %)

Formation of both tertiary and quarternary carbon centers

O

HMe

OP

OMeX

R OSiMe3+

OH O

OMeR

X

BnO

Me

OH O

OMeR

X

TBDPSO

Me

MgBr2-OEt2or TiCl4

Me2AlCl or

AllylSnBu3Et3B

Bu3SnHEt3B

OH O

OMeR

OBn

Me

OH O

OMeR

TBDPSO

MeX = Br, SePhR= H or Me

MgBr2-OEt2,Me2AlCl orAlMe3

BF3-OEt2

Me2AlCl

9

10

73-97 %>20:1

62-90 %>20:1

76-97 %11:1

85 %>20:1

52

Ligand Modification and Enantioselectivity

ON

R2 R3

N

OR1

R1O

N

R2 R3

N

O ON N

O

1

O

N O

OMgI2

-78 °C

Ph+ iPrI

Bu3SnH

O

N O

O

Ph

iPr

Et3B/O2

Ligand 194 %ee : 97 %

Sibi, M.P.; Ji, J. J. Org. Chem. 1997, 62, 3800.

53

Ligand and enantioselectivity

ON

R2 R3

N

OR1 R1

ON

R2 R3

N

O

A B

Iodine TransFlexible PhenylGives S product

Iodine CisRigid ligandGives R product

O

NO

O

Ph

O

N O

O

Ph

top related