reducing energy consumption while satisfying lab … · reducing energy consumption , while...

Post on 05-Jun-2018

218 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

REDUCING ENERGY CONSUMPTION , WHILE 

SATISFYING LAB LIFE SAFETY REQUIREMENTS

Jonathan Eisenberg, P.E.Andrew Thul, P.E. 

Joe Rizkallah, Assistant Director UCI EH&S

Introduction (UCI/RJA)

Campus Energy $avings ChallengeRecipe for Success

SafetyManagement

Visionary & Supportive

UpperManagement

Engineers

FacilityManagersPatience

Team Synergy

SupportiveUsers/Researchers

Articulating the issues:

• As we move into the thru the 21st century one fact has become apparent…

• Energy costs are increasing and traditional sources of energy are not infinite. 

Opportunity for Savings• University of California Irvine

– Large Research University– $16,000,000 Utilities Budget– 2/3 of Budget for Laboratories

• One Laboratory Building at UCI – $100,000+ per year in savings based on Energy Costs – 300+ Metric Tons of CO2 not Produced

5

jar3

Slide 5

jar3 Joe, this slide was provided to us from Matt Gudorf, I thought it would help place some concrete numbers to things. Do you think Matthas updated numbers on this based on the on-going energy measures on campus?

I called and Emailed Matt, no response yet. SO lets go with these numbers and we can change them on the actual one we present if they change.Joe Rizkallah, 6/8/2012

Sub metering and monitoring your lab can be very competitive with the cost of a single commissioning effort. 

CDCV ~$3.12 per SqFtSub metering $0.20 per SqFtHewitt Hall Sub Metering and CDCV $302,888Net present value for Hewitt Hall continuous commissioning (10 years) $665,903

Vendors

• UC Irvine decided to use  the Aircuity System, which had already been installed in several campus laboratories to monitor chemical vapors in labs. 

Who made it happen?• Rolf Jensen & Associates Inc. (RJA)

– Consultant for Building/Fire Code Compliance– Report writing and Hazardous Analysis for Code Variance– Third Party Oversight

• George Yardley Company ‐ installation contractor• Indoor Air Professionals Initial Low Flow Hood Study• UCI EH&S ‐ Campus Fire Marshal, IH group, School Dean’s 

offices support & top down management.

• All were chosen as top in their respective fields.

Gaining buy in from all involved

• EH&S – We had to convince ourselves…• CFM & SFM This has led the California State Fire 

Marshal and their Designates to enforce codes and standards that may at times conflict with current lab design criteria in order to save energy.

• The Alternate Means of Compliance– The first step was select a type of air monitoring system, 

that would meet the criteria for applying for a Request for Alternate Means of compliance, as required by The California Building Code sections 1.11.2.1.2 & 1.11.2.4.

Initial Concerns • Air Changes per hour requirements (CBC)• Non Lab area odors within buildings• Operations of the fume hoods • Keeping track of chemical inventories / research• Maintenance of system over time• Alerting EH&S and Facilities Management of sensor failure or system changes

• Compatibility with Fire Alarm Systems • Qualified Third Party Review Independent Report

Putting it in Practice• Test Building – Croul Hall

– No real issues – developed methodology for studies and process.

– Did the initial request for Alternate Means to State Fire Marshal and Cal‐OSHA variance with this building.

– Determined operational issues with occupants and resolved them.

Current BuildingsEngineering Hall, Nat Sci 2, Nat Sci 1 Sprague Hall,  Hewitt, Cal IT^2, Gross Hall,  Bio Sci 3, Rowland Hall,  Reines Hall

Expansion to non ‐ lab buildings is being considered for implementation.

GENERAL SYSTEM INFORMATION

13

Demand ControlDynamic Environmental Exhaust 

• The sensor suite monitors for – Carbon Dioxide– Carbon Monoxide– Airborne Particulates– Relative Humidity– Total Volatile Organic Chemicals (TVOC)

14

How the System Functions• Collects Sample packets of air from each zone

• Transfers packets of air to Air Data Routers

• Air Data Routers funnel air packets into sensor suite for analysis of  Indoor Air Quality

• Sensor Suite records Indoor Air Quality

• If Indoor Air Quality is outside of acceptable ‘normals” the Sensor Suite sends a signal to the Supply Air Valves to increase Air Flow until normal IAQ levels are met.

15

Sampling System Schematic

16

However, sampling only occurs within the exhaust stream, not in the room.

Mechanical System Schematic1. Room sensor mounted in 

general exhaust duct samples a packet of air

2. Packet of air is routed to the Sensor Suite

3. Sensors measure indoor air quality

4. Information Management System determines need for increased ventilation, commands VAV controllers, and serves data to a web server.

5. System monitoring is available via a web based interface.

17

ENVIRONMENTAL HEALTH AND SAFETY REQUIREMENTS

jar4

Slide 18

jar4 I'm thinking it would be good to add discussions regarding the EHS concerns, bench top evals, understanding how labs are used etc. just sort of a 30,000 foot level before desucssing the OSHA Variance process. I added this to be consistent in formatting, the discussionwill occur on the next page.

I made my best attempt at this slide in conjunction with Scott Jackson who is our CFM and worked on these projects with Lisa.Joe Rizkallah, 6/8/2012

Cal – OSHA• Variance request and process

– Testing and Engineering process was identified, completed, and presented to the Cal – OSHA board in person.

• Bench top surveys and review of Hazardous Material Use were conducted and evaluated for appropriate use of Aircuity System.  Both by UCI EH&S and Third Party (RJA).

– Installation of initial system was concurrent with variance process. 

– Alternate Means was also obtained concurrently.

FIRE AND LIFE SAFETY REQUIREMENTS

20

Laboratory Requirements in California

CBC Laboratories• Unique occupancy classifications (Group 

L/Group H‐8)• Group L/H8

• Research Laboratories• Lab Suites• Minimum Mechanical Exhaust 

Rates• “Stepping Stone” Between 

Group B and Group H• Group B Laboratories

• Identical to IBC requirements• Control Areas

Group L Laboratories• Minimum 6 ACH or 1 CFM/Sq. Ft. 

of Floor Area• Continuous operation at designed 

rate unless approved alternativeis used

• Exhaust from a point within 12 inches of the floor based on review of vapor density

21

jar5

Slide 22

jar5 I am going to revise this slide so that it is readable...i think it is important to discuss the varying design of lab exhaust rates and standard of care.

No problem.Joe Rizkallah, 6/8/2012

Ventilation Rates Based on Lab Size Per IBC (Group H Occupancy Classification)

Location Room Area (Square Feet)

Ceiling Height(Feet)

Required Ventilation Rate (CFM)

CorrespondingAir Change Rate (ACH)

Basement008 - 020 4,350* 10.0 4,350 6015 896 9.5 896 6.3015A 726 9.5 726 6.3019 597 9.5 597 6.3022-036 3,211* 9.5 3,211 6.3First Story1222 2151 9.5 2151 6.31212, 1212A, 1212B,1212C,1212D

2891* 10.0 2891 6

1313 1694* 10.0 1694 61311, 1311A,1311B 1416* 10.0 1416 6Second Story2222, 222A, 222B 1584 10.0 1584 62224 1098 9.5 1098 6.32212, 2212A, 2212B 1792* 10.0 1792 62311 1444 10.0 1444 62313, 2313A, 2313B 1617* 10.0 1617 6

23

jar6

Slide 23

jar6 I am going to revise this slide to provide more of a general overview of how ACH's vary and are affected by room size, to illustrate the ability for savings. I am not sure this slide drives the point home very well.

Try to give a more basic view of ACHs in labs.

No problem, dump anything you think doesn't sell the concept!Joe Rizkallah, 6/8/2012

Requirements for FLS Concerns vs. Occupant Comfort/Health Concerns

• FLS Requirements– Maintain concentration of vapor below 25% of LEL within the room (and ductwork)

• Health/Comfort Requirements– Provide adequate ventilation to meet requirements to mitigate health risks

– Provide adequate thermal comfort for the laboratory under consideration

• Alternate method results in reduction of ACH by 2.3‐4.3 ACH  (35‐68%)

24

CASE STUDY –CROUL HALL, UNIVERSITY OF 

CALIFORNIA ‐ IRVINE

25

Building Information• Construction Type

– Type II F.R. (1‐hour FRR Construction, Non‐Combustible) equivalent to Type II‐A

• Fire Protection Systems– Fire Sprinkler System Throughout– Automatic Fire Alarm System

• Smoke Control System (Three Story Atrium)• Laboratory Ventilation

– Ceiling supply and exhaust registers

26

Design Challenges and Advantages• Sampling System Design Challenges

– Unable to Detect In‐organics• Hydrogen 

– Does Not Interface with Fire Alarm System– Sampling Time

• Mechanical System Design Challenges– No exhaust registers within 6” of floor

• System Advantages– Emergency “Red Button”– Fail Safe (Highest Design Flow of Phoenix Valve)

27

Overview of Performance Based Methodology

• Identify Hazardous Materials– EHS Provided Laboratory Inventory Classified and Quantified

• Determine Severe Case Spill Scenario– Assumptions

• Spill of Largest Container of Liquid• Single Spill at a Time (catastrophic spill not considered i.e., earthquake)• Spill Depth 2 mm – based on available data• Well mixed vapors• Most daily activities are conducted using appropriate safety procedures (e.g., fume 

hood use)• Flammability Limit Analysis• Vapor Generation Calculation• Exhaust Rate Requirements

– Based on Code Requirements (BC/FC/MC)

28

Hazardous Materials Inventory• Physical Hazards 

– Flammable and Combustible Liquids

– Oxidizing Gases– Unstable Reactives

• Health Hazards– Corrosive gases– Cryogenics– Toxic/Highly Toxic– Irritants– Carcinogens

• Bench Top Evaluations– EH&S on‐going 

documentation of lab procedures and uses

– Health hazard oriented– Results of these affect 

whether laboratory is candidate for CDCV

• Fume Hood Use– Most hazardous processes 

take place within Fume Hood

29

Spill Size Calculation• Assumed total maximum container size is equal to the total quantity 

within Laboratory (i.e., dispensing from larger to vessels to process containers)

• Non‐simultaneous release of multiple chemicals• Vapor generation directly dependent upon spill size

– Assumed spill depth, calculated spill area based on maximum container size volume

• Assumed depth of 2mm based on chemicals present and available literature– Neglected edge effects of pool (i.e. constant depth)

30

Flammability Limit Analysis• LFL – Minimum concentration below which propagation of a flame will not 

occur in presence of competent ignition source

• UFL – Maximum concentration above which propagation of flame will not occur in presence of competent ignition source

• First order evaluation of the physical hazards associated with spill event– Comparison of vapor generation and ventilation rates to determine 

concentrations vs. LEL

31

Vapor Generation Calculation• Assumptions

– Temperature of solvent at the floor is room temperature• Calculated Evaporation Rate using EPA 550‐B‐99‐009 Equation D‐1

• Provides evaporation in lb/minute • Convert to CFM based on molecular weight of vapor and room 

temperature

32

jar7

Slide 32

jar7 I need to add another slide discussing this calculation and why it was appropriate. provide a little bit better information regarding the assumptions we used.

Go For it!Joe Rizkallah, 6/8/2012

“Well‐Mixed” Assumption

• Regardless of implementation of variable exhaust rates if environmental air is not “well‐mixed” there is potential for a fire incident

• During RJA site walk most laboratories were negative pressure and air moved into the labs from exit access doors (facilitating mixing)

33

Exhaust Rate Calculation• Assume vapors are “well‐mixed” within the room based on supply/exhaust 

configuration• In order to limit the concentration within duct work to 25% of the LEL as 

required by the Mechanical Code this is a volumetric comparison

• Compare the required exhaust rate (from equation above) to provided exhaust rate in CFM based on ACH and Room Size

• 4 can be viewed as a safety factor

4*)100/.(%

)(.LELConcent

CFMRateEvap

34

Flammable Gases• Flammable gases also present within laboratories• Fire Marshal Concerns regarding how change in ventilation affects gas 

concentrations in room given failure of tank• Calculated Gas Jet Flow from SFPE HandbookMaterialρ∞, density at ambient conditions k, calculated by cp / cv Ambient ConditionsT∞, ambient temperature P, upstream / tank pressureP∞, ambient Type of Flow C, discharge coefficientρs, gas density at dischargecp of airg, gravitational constant Flow ConditionsA, leak area D, leak diameter

35

Flammable Gases

• Originally assumed failure of valve• Then assumed pin‐hole sized leak• Equation on previous page provided flow rate in kg/s

• Converted to M3/sec then to CFM

36

Findings/Conclusion• Findings

– Flammable Liquid Spill• Vapor generated does not exceed 25% of LFL for any spill scenario if air within laboratory is well mixed

– Flammable Gas Release• Concentration exceeded 25% of LFL in all but 1 case• Concentration exceeded LFL in all but 2 cases

• Conclusion– Implementation of reduced ACH results in code equivalent level of 

protection

37

Additional Considerations• Implementation of this approach is highly dependent on:

– Administrative Controls (Chemical Inventory)– Active Training and Involvement between EH&S and Building 

Occupants (reduce user error)– Complete and Correct Mechanical System Designs and Documentation 

(HVAC supply/exhaust locations)• FA Sequence Revision: smoke detection in the laboratories results in an 

override of the Aircuity System and the supply AHU’s for the laboratories shut down by zone

38

top related