rene@astro.su.se l6 - stellar evolution i: november-december, 20061 l 6: circumstellar disks...

Post on 17-Jan-2016

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

L6 - Stellar Evolution I: November-December, 2006 1rene@astro.su.se

L 6: Circumstellar Disks

Background image: HH 30 JHK HST-NICMOS, courtesy Padgett et al. 1999, AJ 117, 1490

L6 - Stellar Evolution I: November-December, 2006 2rene@astro.su.se

L 6: Circumstellar Disks

Background image: HH 30 JHK HST-NICMOS, courtesy Padgett et al. 1999, AJ 117, 1490

The Formation of StarsChapters: 11, 13

L6 - Stellar Evolution I: November-December, 2006 3rene@astro.su.se

L 6: Circumstellar Disks

Recent reviews include:

Protostars & Planets IV, Mannings, Boss & Russell (eds.) 12 Articles on Disks 5 Articles on Outflows

Zuckerman, ARAA 2001, 39: 549Zuckerman & Song, ARAA 2004, 42: 685

Protostars & Planets V (2005)

L6 - Stellar Evolution I: November-December, 2006 4rene@astro.su.se

L 6: Circumstellar Disksand Outflows

L6 - Stellar Evolution I: November-December, 2006 5rene@astro.su.se

Flattened structures - Disks

Inevitable consequence of star formation

Rotation Magnetic Fields

3

5

2

114

2

1

cen

collapseShu assumes Eq.(10.50)

yr10s10K10AU3.0

the:Palla&Stahler

tT

l radiuscentrifuga

Rotation

L6 - Stellar Evolution I: November-December, 2006 6rene@astro.su.se

Flattened structures - Disks

Inevitable consequence of star formation

Rotation

P.S. Laplace 1796, 1799

Exposition du systeme du mondeMechanique celeste

I. Kant 1755

Allgemeine Naturgeschichte und Theorie des Himmels

Planetary System Formation

Astrobiology School: Q1+2 2007

L6 - Stellar Evolution I: November-December, 2006 7rene@astro.su.se

Mass Loss - Outflows

Inevitable consequence of star formation

Angular Momentum Loss - Redistribution

The race between mass accretion & mass loss processses

L6 - Stellar Evolution I: November-December, 2006 8rene@astro.su.se

Lynden-Bell & Pringle 1974, MNRAS 168, 603:

Keplerian Disk

Differential Rotation + Viscosity

Mass Transport InwardsAngular Momentum Transport Outwards

L6 - Stellar Evolution I: November-December, 2006 9rene@astro.su.se

`standard model´: e.g., Frank, King & Raine Accretion Power in Astrophysicsself-consistent structure of steady, optically thick -disk

blackbody radiation and thin disk approximation

turbturbturb

s

2

1

2

1

3

4c

H

cc

2s

3

s

c

v 1, :Sunyaev & Shakura

onprescripti viscosity .8

onconservati momentumangular and mass 13

.7

2

71for opacity Kramer :

0 e.g.,

relationopacity .6

nsportenergy tra 18

3

3

4 .5

state ofequation 43

4

m .4

1)( sound ofty veloci .3

mequilibriu chydrostati vertical /

.2

definitiondisk n thi 2

1.

l

Hc

R

RM

-, qpqTp

R

R

R

MGMσT

Tc

kTP

Pc

RGM

cH

H

When / Where valid ?

L6 - Stellar Evolution I: November-December, 2006 10rene@astro.su.se

Example:

Lin & Papaloizou opacities(1985 PP II):

Icy grains

H-

Moleculesbound-freefree-free(Cox-Stuart-Alexander)

L6 - Stellar Evolution I: November-December, 2006 11rene@astro.su.se

Beckwith et al. 2000, PP IV

Grain Opacities

See Ph. Thebault’s lecture

L6 - Stellar Evolution I: November-December, 2006 12rene@astro.su.se

`standard model´: e.g., Frank, King & Raine Accretion Power in Astrophysicsself-consistent structure of steady, optically thick a-disk

Te

kTh

dRR

D

i

c

hF

R

M

R

R

R

RRR

RMM,

TPρ, Σ, H, c

kTh

R

R

c

23

1/3

322

1

2

1

rad

outin

s

form thehas

1)/exp(

cos4

spectrum theand

21

2

3v

from foundist then city drift velo radial The

...,,,parameter any and

, of functions as

,,,, unknowns 8 for the Solve

out

in

L6 - Stellar Evolution I: November-December, 2006 13rene@astro.su.se

40 observed SEDs of T Tauri Stars & `mean model´ of star+disk

D´Alessio et al. 1999

HABE Disk Structure:

Dullemond & Dominik 2004

includes vertical

Temperaturedistribution

L6 - Stellar Evolution I: November-December, 2006 14rene@astro.su.se

Gas Disks – Structure Models

Steady Disks around Single Stars

Boundary Conditions Rin : boundary layer, magnetosphere, hole?Rout: ad hoc? , interstellar turbulence?

Viscosity MHD/rotation (Hawley & Balbus 1995)

Opacity , T, …, XYZ, ..., ,..., ...)

Models Adams & Shu 1986 (flat)[examples] Kenyon & Hartmann 1987 (flared)

Malbet & Bertout 1991 (vertical structure)D´Allessio et al. 1998,... 2003Aikawa & Herbst 1998 (chemistry)Nomura 2002 (2D)Wolf 2003 (3D) See G. Mellema’s lecture

L6 - Stellar Evolution I: November-December, 2006 15rene@astro.su.se

Observations of Keplerian Disks

JE Keeler 1895ApJ 1: 416

The Rings of Saturnspectrum

image

Courtesy Brandeker, Liseau & Ilyn 2002

L6 - Stellar Evolution I: November-December, 2006 16rene@astro.su.se

2 Categories of Disks observed

T Tauri Disks: around young stars (0.1 - 10 Myr) of half a solar mass (0.1 - 1 Msun) at 150 pc distance (50 - 450 pc) in and/or near molecular clouds Accretion Disks

Debris Disks: around young ms-stars (10 - 400 Myr) of about a solar mass (1 - 2 Msun) at 20 pc distance (3 - 70 pc) in the general field Vega-excess stellar disks

gas rich

gas poor

L6 - Stellar Evolution I: November-December, 2006 17rene@astro.su.se

Frequency of Disks

High Rate of occurence around young stars

NGC 2024 86% Trapezium cluster 80% IC 348 65% Haisch et al. 2001

and around

BDs in Trapezium cluster 65% Muench et al. 2001

see also G. Gahm’s lecture

L6 - Stellar Evolution I: November-December, 2006 18rene@astro.su.se

Gas Disks - Sizes

Size scale (AU) Tracer (mode)* Reference 20000 CS (1- 0) (S) Kaifu et al. 19845000 - 10000 13CO (1- 0) (S) Fridlund et al. 1989 1400 C18O (1- 0) (I) Sargent et al. 1988 <500 1.4 mm (I) Woody et al. 1989 45 + 1600 mm, cm (I) Keene & Masson 1990 200 0.8 mm (I) Lay et al. 1994 7000 H13CO+ (1- 0) (S) Mizuno et al. 1994 5000 0.7 - 1 mm (S) Ladd et al. 1995 4000 - 6000 C18, 17O (2- 1) (S) Fuller et al. 1995 1200 13CO (1- 0) (I) Ohashi et al. 1996 4000 H13CO+ (1- 0) (I)Saito et al. 1996 5000 H12, 13CO+ (1- 0) (S, I) Hogerheijde et al.1997, 98 2500 C18O+ (1- 0) (I) Momose et al. 1998 10 7 mm (I) Rodriguez et al. 1998

20000 CH3OH (2-1), (5-4) (S) White et al. 2006

Fridlund et al. 2002for

One Object: L1551

Size depends on frequency/mode of observation*S=single dish, I=Interferometer

L6 - Stellar Evolution I: November-December, 2006 19rene@astro.su.se

Gas Disks - Sizes

T Tauri/HABE disks

50 - 100 AU Dust: mm-continuum interferometry

100 - 300 AU Dust: scattered stellar light

300 AU Gas: CO lines (evidence for Kepler rotation)

Silhouettte disks (``proplyds´´)

up to 1000 AU Dust: scattered stellar light

generally

L6 - Stellar Evolution I: November-December, 2006 20rene@astro.su.se

Gas Disks - Masses

H2

GasDirectly

COandDust

blueshifted CO

redshifted CO

continuum

L6 - Stellar Evolution I: November-December, 2006 21rene@astro.su.se

Gas Disks - Masses

Lower limit: 0.001 to 1 MSun (based on mm / submm continuum)

How good are these numbers ?

Do we understand disks ?

? Why ?

dust

gas+dust

Solar Minimum Mass Nebula = 0.002 MSun

L6 - Stellar Evolution I: November-December, 2006 22rene@astro.su.se

Gas Disks - Make up

gas disks consist of gas and dust

what components?

what proportions?

L6 - Stellar Evolution I: November-December, 2006 23rene@astro.su.se

2 T Tauri Disks - Make up

van Zadelhoff 2002

13CO (1)*

HCO+ (5)

HCN (5)

CO (200)

HCO+ (200)

HCN (200)

LkCa 15 TW Hya*(N) = depletion factor

L6 - Stellar Evolution I: November-December, 2006 24rene@astro.su.se

2 T Tauri Disks - Chemistry

Molecular abundances (rel. H2)

Species LkCa 15 TW Hya

CO 3.4 ( - 7) 5.7 ( - 8)HCO+ 5.6 (-12) 2.2 (-11)H13CO+ < 2.6(-12) 3.6 (-13)DCO+ …. 7.8 (-13)CN 2.4 (-10) 1.2 (-10)HCN 3.1 (-11) 1.6 (-11)H13CN …. < 8.4(-13)HNC …. < 2.6(-12)DCN …. < 7.1(-14)CS 8.5 (-11) ….H2CO 4.1 (-11) < 7.1(-13)CH3OH < 3.7(-10) < 1.9(-11)N2H+ < 2.3(-11) < 1.8(-11)H2D+ < 1.5(-11) < 7.8(-12)

Thi 2002

L6 - Stellar Evolution I: November-December, 2006 25rene@astro.su.se

Gas Disks - Evolution

Time scales (viscous accretion disk)

tdyn ~ ttherm ~ (H/R)2 tvisc

tdyn ~ 1/Kepler

~ 10-3 - 10-2

H/R << 1

if T ~ R-1/2 , tvisc ~ R

tvisc ~ 105 yr (/0.01)-1 (R/10 AU)

L6 - Stellar Evolution I: November-December, 2006 26rene@astro.su.se

Gas Disks - Evolution

Disk dispersal and disk lifetimes

Physical MechanismsHollenbach et al. 2000 PPIV

SE = Stellar Encounter (tidal stripping) WS = Stellar wind stripping evap E = photoevaporation external starevap c = photoevaporation central star

All for Trapezium conditions

T ~ R-0.5 , tvisc ~ R tvisc ~ 105 yr (/0.01)-1 (R/10 AU)

L6 - Stellar Evolution I: November-December, 2006 27rene@astro.su.se

Gas (T Tauri) Disks - Evolution

Disk dispersal and disk lifetimes

Mass accretion evolutionCalvet et al. 2000 PPIV

Average Error Bar

L6 - Stellar Evolution I: November-December, 2006 28rene@astro.su.se

Gas Disks to Debris Disks – Evolution ?

See also lecture by Ph. Thebault

fdust = LIR/L vs stellar age

(F)IR - excess

Stellar luminosity(bolometric)

How ?

L6 - Stellar Evolution I: November-December, 2006 29rene@astro.su.se

Gas Disks to Debris Disks – Evolution ?

Spangler et al. 2001

ClustersIndividual stars

(= 1 zodi)

L6 - Stellar Evolution I: November-December, 2006 30rene@astro.su.se

HR

479

6A

Pic

HD

213

62

Rieke et al. 2005, ApJ 620, 1010

24 m Spitzer data266 ms stars

2

1

t

t

L6 - Stellar Evolution I: November-December, 2006 31rene@astro.su.se

Debris Disks - Properties

debris (collision products) or particulate (gas free)

percentage of Main Sequence stars (15%?)(observationally) biased towards Spectral Type Afor (detectable) ages <400 Myr Habing et al. 1999, 2001

disk sizes 100 to 2000 AUdisk masses >1 to 100 MMoon (small grains)

see Ph. Thebault’s lecture

Pre-IRAS

Solar system Zodi US Navy Chaplain G. Jones 1855 AJ 4, 94

Vega Blackwell et al. 1983

L6 - Stellar Evolution I: November-December, 2006 32rene@astro.su.se

http://www.hep.upenn.edu/~davidk/bpic.html

L6 - Stellar Evolution I: November-December, 2006 33rene@astro.su.se

How much Gas in Dusty Debris Disks ?

Disk evolution hypothesis: gas-rich to gas-poor

Census of material (mgas/mdust): planet formation

planet formation: enough gas for GPs ?

planet formation: time scales ?

planet formation: seeds of Life ?See

astrobiology lecture

L6 - Stellar Evolution I: November-December, 2006 34rene@astro.su.se

Putting it all together

OutflowsInfallDisks

L 1551 IRS 5 - a protostellar binary

L6 - Stellar Evolution I: November-December, 2006 35rene@astro.su.se

L 1551 IRS 5

Jet blue 10´´

Molecular Outflow – CO blue

2 arcmin

Optical Image (NTT, R-band)

L6 - Stellar Evolution I: November-December, 2006 36rene@astro.su.se

2 Jets !!! – HST-R + spectroscopy

Fridlund & Liseau 1998, ApJ 499, L75

N: Bright and Fast

S: Faint and Slow

L6 - Stellar Evolution I: November-December, 2006 37rene@astro.su.se

Also 2 Radio Jets – 3.5 cm VLA (arcsec)

Rodriguez et al. 2003, ApJ 586, L137

Counter jet(s)

L6 - Stellar Evolution I: November-December, 2006 38rene@astro.su.se

Proper Motion of Disk Sources - VLA 2cmRodriguez et al. 2003, ApJ 583, 330

S,DN,D

o,D

o,D,

2 where

,1.0 massesDisk

2.1 0.1

:system 5 IRS theof mass Dynamical

mm

Mm

Mmm

ii

ii

ii

L6 - Stellar Evolution I: November-December, 2006 39rene@astro.su.se

curves)( burning deuteriummax and 153.0

4

res temperatueffective and esluminositi Surface

Do0

D,

o

11

o0 conv, rad, surf,

4

1

2 surf,

eff,

MLLL

L

RR

MM

LLLL

R

LT

i

i

iiii

i

ii

Stahler et al. - Stahler - Palla & Stahler1980 through 1993

F. Palla, priv. communication

Mass-Radius relation

(M/R)

L6 - Stellar Evolution I: November-December, 2006 40rene@astro.su.se

Putting it all together: observation + theory of infall + theory of mass loss

L 1551 IRS 5 - a protostellar binary

L6 - Stellar Evolution I: November-December, 2006 41rene@astro.su.se

Putting it all together: observation + theory of infall + theory of mass loss

L 1551 IRS 5 - a protostellar binary

L6 - Stellar Evolution I: November-December, 2006 42rene@astro.su.se

adapted from Liseau, Fridlund & Larsson 2005, ApJ, 619, 959

MHD x-wind models: ang. momentum parameter J

L6 - Stellar Evolution I: November-December, 2006 43rene@astro.su.se

L6 - Stellar Evolution I: November-December, 2006 44rene@astro.su.se

Stellar Atmosphere ModelsObserved Spectrum (upper curves)Combined Rotating Model (lower )

L6 - Stellar Evolution I: November-December, 2006 45rene@astro.su.se

After collaps and /or main accretion phase:

Pre-main-sequence evolution begins...

... next lecture by G. Gahm

L6 - Stellar Evolution I: November-December, 2006 46rene@astro.su.se

L 6: conclusions• circumstellar disks are a consequence of star formation• disks and bipolar outflows/jets are connected• disks form potentially planetray systems

L 6: open questions• what are the physics of disks and their outflows ?• how do disks evolve ?• what fraction forms planetary systems ?• when and how ?

top related