residential radon and lung cancer - mclaughlin centre · 2007-12-12 · 218po and 214po deliver...

Post on 29-Jul-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Residential Radon and Lung Cancer

radon decay particles are inhaled into the lungs

energy released from radon decay products damages DNA

Residential Radon and Lung Cancer

218Po and 214Po deliver radiologically significant dose to the respiratory epithelium.

LeadLead--210210

PoloniumPolonium--214214

BismuthBismuth--214214

LeadLead--214214

PoloniumPolonium--218218

RadonRadon--222222

β,γβ,γ

α,γα,γ

α,γα,γ

α,γα,γ

β,γβ,γ

LeadLead--206206

PoloniumPolonium--210210

BismuthBismuth--210210β,γβ,γ

α,γα,γ

β,γβ,γ22 yrs22 yrs

4 day

3 min

27 min

20 min

0.2 ms

5 day

138 day

Stable

Long residency in glass

Decay easy to measure

Winnipeg Radon Case-control Study

• 1980: Cross-Canada radon survey of 18,000 homes(average of 150 Bq/m3 in Winnipeg)

• 1982: First planning meeting for Winnipeg case-control study (large scale, complete dosimetry)

• 1984: Case recruitment initiated• 1992: Field work completed

(750 case-control pairs, 35,000+ dosimeters)• 1993: Data analysis completed, manuscript written• 1994: Publication in American Journal of Epidemiology

(Letourneau, Krewski, Zielinski et al., 140, pp. 310-322)Overall odds ratio = 0.97 (0.81, 1.15) at 5,0000 Bq/m3-years

BEIR VI: Health Risks of Radon

• 1994: Committee convened

• 1999: Report released

“Radon responsible for 10-15 % of all lung cancer deaths in the United States”

New Jersey (NY) 480 442

Winnipeg (Winn) 738 738

Missouri-I (MO-I) 618 1,402

Missouri-II (MO-II) 697 700

Iowa (IA) 413 614

Connecticut (CT) 963 949

Utah-South Idaho (UT) 511 862

Subtotal 4,420 5,707

Total 10,127

Study Available

Case Control

North American Case-control Studies

Radon Concentration (Bq/m3)

Distribution of Radon Levels

0

5

10

15

20

25

30

0 100 200 300 400 500 600

Iowa

0

5

10

15

20

25

30

0 100 200 300 400 500 600

Connecticut

0

5

10

15

20

25

30

0 100 200 300 400 500 600

Utah-Idaho

0

5

10

15

20

25

30

0 100 200 300 400 500 600

Missouri-I

0

5

10

15

20

25

30

0 100 200 300 400 500 600

Missouri-II

0

5

10

15

20

25

30

0 100 200 300 400 500 600

New Jersey

0

5

10

15

20

25

30

0 100 200 300 400 500 600

Winnipeg

0

5

10

15

20

25

30

0 100 200 300 400 500 600

Combined

Perc

enta

ge

<25 25-49 50-74 75-99 100-149 150-199 ≥ 2001 0.82 1.10 0.65 0.27 -0.11

(0.5,1.5) (0.3,3.5) (0.1,7.9) (0.1,1.8) (-0.41,1.34)1.03 1.78 0.77 1.9 1.13 0.076

(0.3,3.3) (0.6,5.3) (03,2.1) (0.5,6.6) (0.4,3.2) (-0.04,0.69)1 1.00 1 0.99 1.35 0.069

(0.6,17) (0.6,1.7) (0.5,1.9) (0.7,2.5) (- -,0.66)1 0.44 1.02 0.71 0.57 0.069

(0.5,1.5) (0.5,1.8) (0.4,2.3) (0.4,2.2) (-0.34,1.56)2.1 1.68 2.02 2.43 1.90 0.327

(1.1,4.1) (08,3.4) (1.0,3.9) (1.2,4.9) (1.0,3.7) (-0.01,1.37)1 1.15 1.27 0.78 0.215

(0.7,1.8) (0.7,2.4) (0.3,1.9) (-0.21,0.51)1 1 1.58 1.62 0.568

(0.5,1.8) (0.8,3.2) (0.7,3.7) (-0.08,2.68)1 1.01 1.29 1.22 1.28 1.41 1.37 0.176

(0.8,1.3) (1.0,1.7) (0.9,1.7) (0.9,1.8) (0.9,2.1) (0.9,2.1) (0.02,0.43)

CT

UT-ID

Winn

Total

MO-I

MO-II

(0.7,3.1)

NJ

1

Radon Concentration (Bq/m3)

1.44

IA

--

1.37(0.5,1.7)

1

ß×100Study

Odds Ratio (95% CI) for Lung Cancers: Restricted Data

0 100 200 300 4000

1

2

3NJWinnMO-IMO-IIIACTUT-IDPooled

Radon Concentration (Bq/m3)

Odd

s R

atio

Odds Ratio for Restricted DataOR (x) = 1 + 0.00176x

Radon Handbook for Canada

Institute of Population HealthR. Samuel McLaughlin Centre for

Population Health Risk Assessment

PAHO/WHO Collaborating Centre in Population Health Risk Assessment

Table of Contents

• Radon Gas• Radon Gas Health Effects• Measurement of Radon Gas in the Home• Radon and Water• Measurement Techniques for Radon Gas in the Home

– A) Pathways for Radon Entry into Homes– B) Reducing Radon Levels in Existing Homes– C) Precautionary Measures for New Homes

• New Canadian Residential Radon Guideline• Frequently Asked questions about Radon Gas• Further Information on Radon

WHO Radiation and Environmental Health Programme Overview

Scope: Establish a global project, with all key international anScope: Establish a global project, with all key international and national d national partners participating, to identify and promote programs that repartners participating, to identify and promote programs that reduce the duce the health impact of exposure to residential radonhealth impact of exposure to residential radon

Objectives:Objectives:Estimate the global health impact of exposure to residential radEstimate the global health impact of exposure to residential radononCreate a global database of residential radon exposureCreate a global database of residential radon exposureIdentify effective measures to reduce radon's health impactIdentify effective measures to reduce radon's health impactPromote sound policy options and mitigation programs to Member SPromote sound policy options and mitigation programs to Member StatestatesRaise public and political awareness about the consequences of eRaise public and political awareness about the consequences of exposure to xposure to radonradonMonitor and periodically review mitigation measures to ensure efMonitor and periodically review mitigation measures to ensure effectivenessfectivenessProvide annual reportsProvide annual reports

International Radon ProjectInternational Radon Project

U.S. National Academy of Sciences Research Priorities for Airborne Particulate Matter (1998 - 2010)

0

10

20

30

40

50

60

1998 2000 2002 2004 2006 2008 2010

Year

$ M

illio

ns

McLaughlin Centre for Population Health Risk Assessment

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y#Y

#Y

#Y

#Y

#Y #Y

#Y

#Y#Y#Y

#Y

#Y

#Y

#Y#Y

#Y#Y

#Y

#Y

#Y

#Y

#Y #Y

#Y

#Y

#Y

#Y#Y

#Y

#Y #Y

#Y

#Y

#Y#Y

#Y

#Y#Y#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y#Y

#Y

#Y #Y#Y

#Y#Y

#Y

#Y

#Y#Y

#Y

#Y #Y

#Y #Y

#Y

#Y

#Y#Y

#Y

#Y#Y#Y #Y

#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y

#Y

#Y#Y#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y#Y

#Y

#Y#Y #Y

#Y

#Y#Y

Salt Lake City

New York

Boston

Seattle

San Francisco

Los Angeles

Dallas

Denver

Minneapolis

MemphisAtlanta

#

Washington

Gary

Nashville

New Orleans

Tampa

Detroit

Phoenix

Houston

Kansas City

Billings

Oklahoma City

#

Charleston

#

Johnstown

#

Steubenville

Sulfate ( ) [ ] < 4.00 4.00 - 4.99 5.00 - 5.99 6.00 - 6.99 7.00 - 7.99 8.00 - 8.99 9.00 - 9.99 10.00 - 10.99 11.00 - 11.99 12.00 - 12.99 13.00 - 13.99 14.00 - 14.99 15.00 - 15.99 16.00 - 16.99 17.00 - 17.99 18.00 - 18.99 19.00 - 19.99 20.00 - 20.99 21.00 - 21.99 22.00 - 22.99 > 23.00

#Y Sulfate Cohort Loc'ns (151)

500 0 500 1000 Miles

500 0 500 1000 1500 Kilometers

SO4 ugm-3

Modeled (Kriged) Sulfate (SO4) Surface

N =151

0

5

10

15

20

25

30

4.0 5.5 7.0 8.5 10.0 11.5 13.0 14.5 16.0 17.5 19.0 20.5 22.0 23.5 25.0

SO4 [ugm-3]

N

X

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y

GaryReno

Tampa

Omaha

Mobile

Fresno

DenverTopeka

Dayton

Dallas

PhoenixAtlanta

Wichita

Jackson

Raleigh

Buffalo

Houston

Norfolk

Seattle Spokane

Chicago

El Paso

Hartford

Portland

Charlotte

Cleveland

Nashville

Birmingham

Washington

Youngstown

Charleston

Boise City

Little RockLos Angeles

Minneapolis

Albuquerque

Indianapolis

Oklahoma City

Salt Lake City

San Francisco

PhiladelphiaSteubenville

#

Huntington

500 0 500 1000 1500 Kilometers

500 0 500 1000 Miles

Fine Particulate [ ] < 9.00 9.00 - 9.99 10.00 - 10.99 11.00 - 11.99 12.00 - 12.99 13.00 - 13.99 14.00 - 14.99 15.00 - 15.99 16.00 - 16.99 17.00 - 17.99 18.00 - 18.99 19.00 - 19.99 20.00 - 20.99 21.00 - 21.99 22.00 - 22.99 23.00 - 23.99 24.00 - 24.99 25.00 - 25.99 26.00 - 26.99 27.00 - 27.99 28.00 - 28.99 29.00 - 29.99 30.00 - 30.99 31.00 - 31.99 32.00 - 32.99 > 33.00

#Y Fine Particulate Cohort ugm-3

Modeled (Kriged) Fine Particulate Surface

0

5

10

15

20

8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0

Fine Particulate [ugm-3]

N

X

N =50

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y#Y

#Y

#Y

#Y

#Y#Y

#Y

#Y#Y#Y

#Y

#Y

#Y

#Y#Y

#Y#Y

#Y

#Y

#Y

#Y

#Y #Y

#Y

#Y

#Y

#Y#Y

#Y

#Y #Y

#Y

#Y

#Y

#Y#Y

#Y#Y#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y#Y

#Y

#Y #Y#Y

#Y#Y

#Y

#Y

#Y#Y

#Y

#Y #Y

#Y #Y

#Y

#Y

#Y#Y

#Y

#Y#Y

#Y #Y#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y

#Y

#Y#Y#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y#Y

#Y

#Y#Y #Y

#Y

#Y#Y

Salt Lake City

New York

Boston

Seattle

San Francisco

Los Angeles

Dallas

Denver

Minneapolis

MemphisAtlanta

#

Washington

Gary

Nashville

New Orleans

Tampa

Detroit

Phoenix

Houston

Kansas City

#

Steubenville

Billings

Oklahoma City

#

Charleston

#

Johnstown

Low Sulfate Air Pollution High Mortality Medium Mortality Low Mortality

Medium Sulfate Air Pollution High Mortality Medium Mortality Low Mortality

High Sulfate Air Pollution High Mortality Medium Mortality

#Y Sulfate Cohort Loc'ns (151)

500 0 500 1000 Miles

500 0 500 1000 1500 Kilometers

Sulfate (SO4) Air Pollution Levelsand

Mortality Rates (All Cause)

Note: Low Mortality rate is not present in areas with High Sulfate Air Pollution

Particulate Matter and Mortalityin U.S. Cities

Cause of Death RR PM2.5 RR SO4

All-cause 1.17 (1.09, 1.26) 1.15 (1.09, 1.22)Cardiopulmonary 1.31 (1.17, 1.46) 1.26 (1.16, 1.37)Lung cancer 1.03 (0.80, 1.33) 1.36 (1.17, 1.66)

http://www.healtheffects.org

McLaughlin Centre for Population Health Risk Assessment

• Utilization of recent advances in statistical modeling, including the incorporation of random effects and non-parametric spatial smoothing components to the Cox Proportional Hazard model.

-120 -110 -100 -90-80 -70

longitude30

35

40

45

latitude

-0.2-0

.15-0

.1-0.0

5 00.

050.10

.15

lo(lo

ngitu

de, l

atitu

de, s

pan

= 0.

2)

-120 -110 -100 -90-80 -70

longitude30

35

40

45

latitude

-4-2

02

4lo

(long

itude

, lat

itude

, spa

n =

0.2)

a) Spatial representation of prevalence of heartdisease adjusted for individual-level risk factors

b) Spatial representation of particulatesulfate levels

See: Burnett, Ma, Jerrett, Goldberg Cakmak, Pope, and Krewski. “The Spatial Association Between Community Air Pollution and Mortality: A New Method of Analyzing Correlated Geographic Cohort Data.”Environ Health Prespect 109(suppl):375-380(2001).

McLaughlin Centre for Population Health Risk Assessment

Mortality Risk Ratios (and 95% CIs) [for each 10 µg/m3 increase in fine particles]

1.005(0.952-1.061)

Other

1.135(1.044-1.234)

Lung Cancer

1.093(1.033-1.158)

Cardiopulmonary

1.062(1.016-1.110)

All Cause

PM2.5 (ave)(10 µg/m3)Cause of Death

Source: A. Pope, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, and G. D. Thurston. Lung cancer, cardiopulmonary mortality and long-term exposure to fine particulate air pollution. Journal of the American Medical Association 287:1132-1141, 2002.

Spatial Analysis of Air Pollution and Spatial Analysis of Air Pollution and Mortality in Los Angeles Mortality in Los Angeles

Modeled PM2.5 Concentration Levels throughout the Los Angeles Region

Standard Errors in Original Units

Results

• Pollution effects significant and large RR ~ 1.17 over 10 ug/m3 contrast for all cause mortality (3 times as large as the inter-urban effect reported by Pope et al. 2002)

• Lung cancer and heart disease RR range from 1.25-1.60

NERAM Colloquia on Health and Air Quality:Interpreting Science for Decision Makers

InterpretationScientificData

Social Issues Economic Issues

Political IssuesTechnological Issues

SciencePolicy

Network for Environmental Risk Assessment & Management

NERAM Air Quality Risk Management:Colloquium Schedule

McLaughlin Centre for Population Health Risk Assessment

2001 University of OttawaOttawa, Canada

2002 Johns Hopkins UniversityBaltimore, USA

2003 Santo Spirito HospitalRome, Italy

2005 National Institute for Public HealthCuernavaca, Mexico

2006 Simon Fraser UniversityVancouver, Canada

Current State of Science

McLaughlin Centre for Population Health Risk Assessment

1. A diverse and growing range of scientific evidence demonstrates significant effects of air pollution on human health and the environment, thereby justifying continued local and global efforts to reduce exposures.

Communication of Science of Policy Decisions

McLaughlin Centre for Population Health Risk Assessment

3. A clearer articulation of the physical and policy linkages between air quality and climate change is needed to inform public opinion and influence policymakers. Care must be taken not to compromise air quality through actions to mitigate climate change. Similarly, air quality solutions must be reviewed in terms of impacts on climate.

Policy Approaches for Air Quality Management

McLaughlin Centre for Population Health Risk Assessment

4. Improving air quality is best approached at a systems level with multiple points of intervention. Policy solutions at the local, regional and international scale through cross-sectoral policies in energy, environment, climate, transport, agriculture and health will be more effective than individual single-sector policies.

Science and Policy Assessment Needs

McLaughlin Centre for Population Health Risk Assessment

13.The effectiveness of local, regional and global policy measures must be scientifically evaluated to confirm that the expected benefits of interventions on air quality, human health and the environment are achieved and if not, that alternate measures are implemented quickly.

For more information

Visit us at:www.mclaughlincentre.ca

McLaughlin Centre for Population Health Risk Assessment

Persistent Organic Pollutants (POPs)

Arctic Circle

Canada

USARussia

Greenland

Ocean currentsAir trajectoriesRiverine inputs

Norway

55°N

What are POPs?• Long-lived (persistent) organic chemicals (not

metals)• Fat soluble substances that bioaccumulate and

bioconcentrate• Semi-volatile substances that can travel long

distances• Toxic substances that have a variety of

significant health effects

• Old pesticides (DDT, Aldrin, Mirex, Chlordane, Toxaphene)

• Commercial chemicals (HCB, PCBs) • ndustrial by-products (dioxins, furans, PAHs)

Arctic Science: 15 years of research

• Air/Soil/Ice Scientists: identified several POPs and metals in Arctic air and ice/sediment cores

• Wildlife Researchers: quantified presence of multiple contaminants in birds, fish and sea mammals

• Epidemiologists: confirmed and characterized more than 15 POPs and metals in Arctic residents, some at very high concentrations

THE GRASSHOPPEREFFECT ......

POPs move thousands of kilometers in the upper atmosphere

CACAR, 1997

CACAR, 1997

POPs and organo-metals biomagnify in the long Arctic food chain because they

are persistent and lipophilic.

Phytoplankton(algae)

Zooplankton Small fish

Predatory fish

Less methylmercury More methylmercury

In the Arctic ecosystem…biomagnification from water to seals, polar bears, and Inuit mothers is > 10,000,000

Regional mercury survey in 8 Arctic countriesMaternal blood values in ppb (AMAP, 2003)

top related