runjob and related topics toru shibata infn, milano (aoyama-gakuin university) 09/september/’04

Post on 12-Jan-2016

215 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

RUNJOB and related topics

Toru ShibataINFN, Milano

(Aoyama-Gakuin University)

09/September/’04

Contents :

1) RUNJOB performance

2) Procedure in RUNJOB data analysis2) Procedure in RUNJOB data analysis

=> Astrop. Phys. 16 (2001) 13, Apanasenko A.V. et. al.

3) RUNJOB results and comparison with other data

4) Theoretical implication of the experimental data

RUssia-Nippon JOint Balloon experiment

M.Furukawa, V.I. Galkin, M. Hareyama, Y. Hirakawa, M. Ichimura,N. Inoue, E. Kamioka, T. Kobayashi, V.V. Kopenkin, S. Kuramata,

A.K. Managadze, H. Matsutani, N.P. Misnikova, R.A. Mukhamedshin,S. Nagasawa, R. Nakano, M. Namiki, M. Nakazawa, H. Nanjo,

S.N. Nazarov, S. Ohata,H. Ohtomo, D.S. Oshuev, P.A. Publichenko, I.V. Rakobolskaya,T.M. Roganova, C. Saito, G.P. Sazhina, H. Semba,

T. Shibata, D. Shuto, H. Sugimoto, R. Suzuki, L.G. Sveshnikova, R.Tanaka, V.M. Taran,N. Yajima, T. Yamagami, I.V. Yashin,

E.A. Zamchalova, G.T. Zatsepin, I.S. Zayarnaya

Faculty of Engineering, Aomori University, Aomori 030-0943, JapanDepartment of Physics, Aoyama Gakuin University, Tokyo 157-8572, JapanFaculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, JapanSchool of Medicine, Hirosaki University, Hirosaki 036-8562, JapanP.N.Lebedev Physical Institute of Russian Academy of Sciences, Moscow 117924, RussiaPhysical Department of Moscow State University, Moscow 119899, RussiaD.V.Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119899, RussiaInstitute for Nuclear Researches of Russian Academy of Sciences, Moscow 117312, RussiaMultimedia Information Research Division, National Institute of Informatics The Ministry of Education, Tokyo 101-8430, JapanShonan Institute of Technology, Fujisawa 251-8511, JapanDepartment of Management, Urawa University, Urawa 337-0974, Japan

RUNJOBRUNJOB

constructionearly May(ISAS, ICRR)

launchingmid. July

level flight at 32kmexp. time ~ 150hrs

recovery

dismountingearly August

process.mid. Aug.

Performance of RUNJOB experiments

Balloon Trajectory

launchinglanding

Balloon Altitude

RUNJOB1,2RUNJOB3,4RUNJOB8,9RUNJOB10,11

Average altitude ~ 32km ~ 10g/cm2

RUNJOB detector

diffuser ( ~4cm)

target ( ~10cm)

thin EC( ~5c.u.)

spacer ( ~20cm)

Procedure in RUNJOB data analysis:Procedure in RUNJOB data analysis:

1) Energy determination1) Energy determination

2) Charge determination2) Charge determination

3) Detection efficiency calculation3) Detection efficiency calculation

RUNJOB results and comparison with other data:

1) Light elements (p, He)

2) Heavy elements (CNO, NeMgSi, Fe)

3) 2-ry/1-ry ratio (B/C, sub-Fe/Fe)

4) All-particle spectrum and average mass

( Moscow04)

ATIC

10-3

10-2

10-1

100

101

102

103

101 102 103 104 105

SOKOLJACEE

CRNSANRIKURUNJOB

E2.

5 dI/

dE [

m-2se

c-1sr

-1(G

eV/n

)1.5 ]

00

kinetic energy E [GeV/nucleon]0

CNO-group

×( 1/10)

NeMgSi-group

×( 1/100)

Iron-group

JACEE SOKOL&≧: Z 17

HEAO-3

(Moscow04)

(summarized by V. Zatsepin)

Summary on RUNJOB data (1)

・ 95% of all data was analyzed.・ The spectra cover the energy range 10 -1000 TeV for proton 5 - 100 TeV/n for helium 1 - 70 TeV/n for CNO 1 - 20 TeV/n for NeMgSi 0.5 - 8 TeV/n for iron・ Proton spectrum doesn’t’ show any tendency of steeping in observed energy range.・ Helium flux is lower (about half) than JACEE , SOKOL ATIC, but consistent with MUBEE and Grigorov data.・ Proton and helium spectra are nearly parallel

・ CNO spectrum has no indication of enhancement in > 10TeV/n region.・ Iron spectrum is consistent with other groups within statistical error ・ 2-ry/1-ry ratio was shown in TeV/n region.・ All particle spectrum and average mass covers the energy range from 30 to 1000TeV/particle.・ All particle flux is lower than other direct measurement, but seems to be consistent with ATIC (Moscow04)・ The Spectrum shape is similar to other direct measurement => flattering before knee ?・ Average mass is nearly constant in our observation region, 30-1000 TeV with <ln A> ~1.5 (helium)

Summary on RUNJOB data (2)

Procedure in RUNJOB data analysis:Procedure in RUNJOB data analysis:

1) Energy determination1) Energy determination2) Charge determination2) Charge determination3) Detection efficiency calculation3) Detection efficiency calculation

RUNJOB results and comparison with other data:RUNJOB results and comparison with other data:1) Light elements (p, He)1) Light elements (p, He)2) Heavy elements (CNO, NeMgSi, Fe)2) Heavy elements (CNO, NeMgSi, Fe)3) 2-ry/1-ry ratio (B/C, sub-Fe/Fe)3) 2-ry/1-ry ratio (B/C, sub-Fe/Fe)4) All-particle spectrum and average mass4) All-particle spectrum and average mass

Theoretical implication of the experimental data:0) Motivation1) Model of CR propagation 2) 2-ry/1-ry ratio, isotope, diffusiveγ-ray, anti-p, ……

Present status of C.R. direct obs. in GeV-PeV region

observables: physics: ◎1-ry nuclei (p, He, ….., Fe) : accel. limit, source spectrum ◎2-ry nuclei (LiBeB, sub-Fe) : path length, residence time - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

◎ultra-heavy nuclei : r-process, s-process ◎anti-particle (p, e+, ……) : novel source, path length ◎isotopes (Be10, Al26, Cl36, …) : life time of C.R., gas density ◎electrons : nearby source, anisotropy ◎diffusive γ-rays : gas density, novel source

in harmony with each other ? if not, novel source ?

Configuration of our Galaxy

Our model

● gas density : )/||(exp)( nn zzrr0

/nrn

with

● CR source density : )/||/(exp)();(QQ

zzrrRR0

QQ r

RR00

QQ )(

● boundaryless Galaxy :

,r,(N |z|→∞ 0);R 0);Rz,(N →∞r

with

● diff. coefficient : )/||(exp)();(DD0

zzrrRR /D rD

vR00

DD )( αR

Important parameters:

● 2.2 2.4~ γ

0

2

1

1

:

:

: ≪

ν

nz

nz

nzDz

Dz

Dz

nzzD

1

1

γR Q:

: Kraichnan - type

: Kolmogorov- type

2

1

3

1 ααRD

Practically, we presume

          zD ≫   zn

(thin gas disk surrounded by a large diffusion space)

~ zn / zD ( ~

0.1)ν = 1 [1 + zD zn]

× : source r0 (r0 , z0 )→: solar system ~ ~

→r (r 10kpc, z 0)

×

Φ ( r, E; r0 , E

0 ) : structure function

(r0 , E

0 )

(r, E )→

0) structure function:

1) primary component:

2) secondary component

<= ApJ, Vol. 612 (Sep. , 2004), Shibata et. al.

5 ) Energy distribution in TeV (ground-base)

Comparison with experimental data :  

2 ) Longitudinal distribution (EGRET & COS-B)

3 ) Latitudinal distribution (EGRET)

4 ) Energy distribution in GeV region (EGRET)

0 ) Cosmic-ray data on 1-ry, and 2-ry/1-ry ratio

1 ) Cosmic-ray data on 10Be / 9Be ratio

filled symbol: RUNJOB

cross symbol: ATIC

10-3

10-2

10-1

100

101

102

103

104

10-2 100 102 104 106

kinetic energy E0 [GeV/particle]

proton

helium(× 1/10)

CNO(× 1/100)

Ne-Si(× 1/1000)

iron(× 1/10000)

γ :

2.3

2.4

2.5

2.3

2.4

2.5

2.3

2.4

2.5

2.3

2.4

2.5

2.3

2.4

2.5

α = 1/3

filled symbol: RUNJOB

cross symbol: ATIC

10-3

10-2

10-1

100

101

102

103

104

10-2 100 102 104 106

kinetic energy E0 [GeV/particle]

proton

helium(× 1/10)

CNO(× 1/100)

Ne-Si(× 1/1000)

iron(× 1/10000)

γ :

2.2

2.3

2.4

2.2

2.3

2.42.2

2.3

2.4

2.2

2.3

2.4

2.2

2.3

2.4

α = 1/2

10-3

10-2

10-1

100

10-1 100 101 102 103 104

JuliussonChappel & WebberSimon et al.Orth et al.HEAO-3Lezniak & WebberCaldwell & MeyerDwyerMaehl et al.ACEUlyssesVoyagerGarcia-Munoz et al.

kinetic energy; E0 (GeV/nucleon)

● : RUNJOB [Li+Be+B]/[C+N+O]

ν :0.40

0.20

0.10

0.05

σ = 12.23 mb○●

(a) α = 1/3

10-3

10-2

10-1

100

10-1 100 101 102 103 104

JuliussonChappel & WebberSimon et al.Orth et al.HEAO-3Lezniak & WebberCaldwell & MeyerDwyerMaehl et al.ACEUlyssesVoyagerGarcia-Munoz et al.

kinetic energy; E0 (GeV/nucleon)

● : RUNJOB [Li+Be+B]/[C+N+O]

σ = 6.11 mb○●

ν :0.40

0.20

0.10

0.05(b) α = 1/2

10-3

10-2

10-1

10-1 100 101 102 103 104

RUNJOBSANRIKU opening-angle methodSANRIKU E-W asymmetry methodHEAO-3(1990)HEAO-3(1988)ACE

kinetic energy; E0 (GeV/nucleon)

ν :

0.40

0.20

0.10

0.05

(a) α = 1/3

σ = 12.23 mb○●

10-3

10-2

10-1

10-1 100 101 102 103 104

RUNJOBSANRIKU opening-angle methodSANRIKU E-W asymmetry methodHEAO-3(1990)HEAO-3(1988)ACE

kinetic energy; E0 (GeV/nucleon)

ν :

0.40

0.20

0.10

0.05

(b) α = 1/2

σ = 6.11 mb○●

● 0σ = 2

D0

0

czn

D

0σ = mb34.9 )(

ppσ

:x,x average path length)(

for

0D = 2810 seccm2 at R GV1=

= kpc1

0n 3cm1

Dz

: gas density at Galactic center

: scale height of diffusion coeffi.

1-

00 σ

η η/0 0 0

= 0.5

= 1.0= 1.0

ν: 0.2: 0.1: 0.0

α = 1/3σ /0 σ 00 = 2

ISOMAX (2001)ACE (1999)Ulysses (1998)Voyage (1994)IMP7/8 (2001)ISEE-3 (1980)

kinetic energy E (GeV/n)

Be

B

e R

ati

o1

09 /

0

.1

.2

.3

.4

.5

.6

10 10 10 10-2 -1 0 1 210

0

(preliminary)

● 0η =

0η = 3.73 η

0D

610 1.6  

00

τ

Dz

for

0D = 2810 seccm2 at R GV1=

= kpc1 Dz

: life time of 10Be

: scale height of diffusion coeffi.

0

τ0

5 ) Energy distribution in TeV (ground-base)

Comparison with experimental data :  

2 ) Longitudinal distribution (EGRET & COS-B)

3 ) Latitudinal distribution (EGRET)

4 ) Energy distribution in GeV region (EGRET)

00 )) Cosmic-ray data on 1-ry, and 2-ry/1-ry ratioCosmic-ray data on 1-ry, and 2-ry/1-ry ratio

11 ) ) Cosmic-ray data on Cosmic-ray data on 1010BeBe // 99Be ratioBe ratio

3)γ-ray component

2Lπ4

dVσvn )(r

z

x

y0

l

Earth

line of sight

L

b

γγp)(rpN

ApJ, vol. 612 (‘04, sep.)

1 10 100 1000

(Galactic center)

(Solar system)

r (kpc) 0

5

10

15

20

.5

.2

kinetic energy E0(GeV/nucleon)

I p(r

; E

0)/I

p(0

; E

0)

.1

1

.05

③  400 ~ 2000   GeV   :   Neuhofer et al. (1972)

①           E0  ~    1  GeV   :   Bugg et al. (1964)   ②   10 ~  300  GeV   :   Jaeger et al. (1975)

④  30 ~ 700 TeV :   Chacaltaya (1980) , (UA7)

(in CMS)

*η = ln tan- /2θγ*

0 2 4 6 8-2-4-6-8

η*

dσ d/

(

)

ppσ

1 /(

)

.

(1 N

0 )

/

.

0

2

4

6

1

3

5= 0

1

10

100

τ ≡ T / p0 0 0 <= isotropic dist. in CMS

(mb

)N γσ

pppp→γ

σ∫

0(E

0,E

)dE

γ

γ=

-

○ : experimental data (compiled by Dermer)

kinetic energy of proton; E0 (GeV)

100 101 102 106

104

102

101

100

103 104 105

103●: our empirical curve

● : expected from pseudo-rapidity density by UA5, UA7, and Chacaltaya experiments

: = 0.5

: τ = 0.00

dEγ

σ d/

(

)pp

σ1 /(

)

.

[]

GeV

-1 100

10-1

10-2

0.2 0.4 0.6 0.80

E (GeV)γγ -ray energy in LS ;

1

pT :

200 MeV

150

100

E0 = 0.97 GeV

(Bugg et al. 1964)

-

: τ = 1.60

= 2.2:

with pT = 143 MeV-

:::

1.753610

°°

°°

θγ

16

27

°°

E0 = 23.1 GeV

d2 σ

dEγ

Ωd[

]m

b sr

-1G

eV-1

103

0 4 8 12 1610

-1

E (GeV)γγ -ray energy in LS ;

102

101

100

: τ = 5.00

= 7.0:

with pT = 151 MeV-

: τ = 0.20

= 0.5:

/dσ d

(mb

)x F

||

10-1

100

101

102

103

104

xF| | √γ2p L /* s| |=

0 .1 .2 .3 .4 0 .1 .2 .3 .4 .5

~~

a) 11.5 GeV b) 204.1 GeV

with pT = 133 MeV-

b) 44.7GeV

10-4

10-3

10-2

10-1

100

101

0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6

~~ ~~

d2 σ

dEγ

Ωd*

*[

]sr

-1G

eV-1

σpp1

γ -ray energy in CMS ; E (GeV)γ*

c) 52.7GeVa) 30.2GeV

θγ*

: 10°: 16°: 24°: 90°

: τ = 50

= 8:with pT = 142 MeV

: τ = 70

= 10:with pT = 140 MeV

: τ = 90

= 12:with pT = 144 MeV- - -

0

= 5.0:: τ = 3.0: τ = 4.00

: = 6.0

: τ = 0.80

= 1.2:

b) E0 = 204.1GeVa) E0 = 11.5GeV

/dσd

(mb

** /

dσd

(mb

** /d

σ d(m

b)

η*

10-1

100

101

102

0-2-4 2 0-24 2 0-24 2 4

*η = ln tan- /2θγ*

~~ ~~

c) E0 = 299.1GeV

Σ Eγ = 20 - 50 TeV Σ Eγ = 50 - 200 TeV

10-1

100

101

102

d f

σ d/

(

)pp

σ1/

(

)

.

γ

γfractional energy of - rays;

0 .2 .4 .6 .8 0 .2 .4 .6 .8 1

~~

Eγ Σ Eγ/f = γ

: τ = 40.00

= 70.0:

: τ = 80.00

= 120.0:

with pT = 166 MeV- with pT = 176 MeV-

only relative value is compared !

only relative value is compared !

filled symbol: RUNJOB

cross symbol: ATIC

10-3

10-2

10-1

100

101

102

103

104

10-2 100 102 104 106

kinetic energy E0 [GeV/particle]

proton

helium(× 1/10)

CNO(× 1/100)

Ne-Si(× 1/1000)

iron(× 1/10000)

γ :

2.3

2.4

2.5

2.3

2.4

2.5

2.3

2.4

2.5

2.3

2.4

2.5

2.3

2.4

2.5

α = 1/3

filled symbol: RUNJOB

cross symbol: ATIC

10-3

10-2

10-1

100

101

102

103

104

10-2 100 102 104 106

kinetic energy E0 [GeV/particle]

proton

helium(× 1/10)

CNO(× 1/100)

Ne-Si(× 1/1000)

iron(× 1/10000)

γ :

2.2

2.3

2.4

2.2

2.3

2.42.2

2.3

2.4

2.2

2.3

2.4

2.2

2.3

2.4

α = 1/2

20 < l < 55° °-2 < b < 2°°

↓↓↓

↓↓

E2

γdN

/dE γ

[]

cm-2

s-1sr

-1 M

eV

γ-rayenergy; E (GeV)γ

10 0

10-1

10-2

10-3

10-4

10-5

10-6

100 101 102 103 104 105 106

Inner GalaxyEGRET

W

H T

T THA

γ = 2.3

2.4

2.5

cutoff energy

1 PeV ∞

α = 1/3

■ : Berezinskii et al.

Outer Galaxy

140 < l < 225° °-2 < b < 2°°

↓T

↓T

↓T

↓↓↓

E2

γdN

/dE γ

[]

cm-2

s-1sr

-1 M

eV

γ-rayenergy; E (GeV)γ

EGRET

10 0

10-1

10-2

10-3

10-4

10-5

10-6

100 101 102 103 104 105 106

CA

γ = 2.3

2.4

2.5

cutoff energy

1 PeV ∞

α = 1/3

■ : Berezinskii et al.

● EGRET data are not in harmony with C.R. data :

1) Energy calibration ?

2) Subtraction of SNR ?

3) Novel sources ?

Conclusion

● 100 GeV ~ 100 TeV-γ are quite important

3) I.C. or Brems. Photons effective ?

top related