safety considerations for gene editing and other gene ... · safety considerations for gene editing...

Post on 05-Jul-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Safety Considerations for Gene Editing and Other Gene Therapy Products: An FDA Perspective

Jakob Reiser, Ph.D.Gene Transfer and Immunogenicity Branch

Division of Cellular and Gene TherapiesOffice of Tissues and Advanced Therapies

CBER, FDA

2

Gene therapy products regulated by OTAT

Bacterial/yeast4%

Plasmids22%

Adeno13%

‐retro20%

Lenti15%

AAV12%

Pox6%

4HSV2%

Other4%

www.fda.gov

560 active Gene Therapy INDs(March 9, 2017)

3

Clinical applications of lentiviral vectors

www.fda.gov

Ex vivo applications • T cells to treat HIV infection • CAR T cells to treat leukemias and lymphomas• CD34+ hematopoietic progenitor/stem cells to treat

blood disorders metabolic disorders immunodeficiencies

In vivo applications • Ocular diseases• CNS disorders• Immunotherapy applications

4

Safety issues with HIV-1-based lentiviral vectors used in clinical trials

www.fda.gov

Potential to form replication-competent lentivirus

Potential for insertional gene activation/inactivation

Potential for off-target transduction in vivo

5

Approaches to improve the safety of lentiviral vectors

www.fda.gov

• Reducing the likelihood to form replication-competent lentivirus

• Narrowing the vector’s tissue tropism

• Directing vector integration to genomic “safe harbor sites”

• Modifying the cell substrate for lentiviral vector production

6

Approaches to improve the safety of lentiviral vectors

www.fda.gov

• Reducing the likelihood to form replication-competent lentivirus

• Narrowing the vector’s tissue tropism

• Directing vector integration to genomic “safe harbor sites”

• Modifying the cell substrate for lentiviral vector production

7

Emergence of partial recombinants

Packaging construct

Vector construct

Partial recombinant

CMVgag

polRRE

tat

rev

polyA

LTRRRE LTR

gag

transgene

LTR LTRtransgenegag

polRRE

A

B

C

Replication-competent lentivirus?

8

Assay to assess formation of partial recombinants

Transduction of HEK 293 cells

Blasticidin (BSD) selection

Characterization of resistant cell clones by PCR and DNA sequencing

Packaging construct

Vector construct

Partial recombinant

CMVgag

polRRE

tat

rev

polyA

BSD

LTRRRE LTR

gag

EGFP

LTR LTREGFPgag

pol

RREBSD

A

B

C ORI

ORI

www.fda.gov

9

Reducing sequence overlaps

www.fda.gov Kuate et al. Human Gene Therapy Methods 25, 126-135 (2014)

10

Conclusions• Partial recombinants are rare

• The frequency of partial recombinants is dependent on vector design

www.fda.gov

11

Approaches to improve the safety of lentiviral vectors

www.fda.gov

• Reducing the likelihood to form replication-competent lentivirus

• Narrowing the vector’s tissue tropism

• Directing vector integration to genomic “safe harbor sites”

• Modifying the cell substrate for lentiviral vector production

12

Strategy to target lentiviral vector transduction

www.fda.gov

13

Strategy to target IL-13R2-positive cells using lentiviral vectors pseudotyped with measles virus-derived hemagglutinin (H) and fusion (F) proteins

Measles virus F protein

Receptor-blind measles virus H protein fused to IL-13

IL-13R2

www.fda.gov

14

Targeting human osteosarcoma cells that conditionally overexpress IL-13R2

www.fda.gov

HOS Uninduced InducedHOS-IL-13R2 HOS-IL-13R2

EGFP

SSC

B

0.2% 0.5% 18.0%

HOS-IL-13R2 HOS

IL-13R2

Cou

nts

uninduced induced

A

Ou et al. Human Gene Therapy Methods 23, 137-147 (2012)

15

Large-scale manufacturing of lentiviral vectors pseudotyped with

measles virus H and F proteins

www.fda.gov

16

Large-scale manufacturing of lentiviral vectors pseudotyped with

measles virus H and F proteins

www.fda.gov

Samples Transducing units, TUs (%) TUs/mg protein

Input vector samples 100 2.43 × 104 ± 1.21 × 104

Vector eluate 64.36 ± 11.43 2.87 × 106 ± 0.15 × 106

Samples after desalting using Amicon units

60.45 ± 27.64 2.85 × 106 ± 0.33 × 106

100-fold purification

Mustang Q anion exchange membrane chromatography

ÄKTA pure chromatography system

Marino et al. Gene Therapy 22, 64-69 (2015)

17

Depiction of a lentiviral vector targeting system involving RNA aptamers

Advantages of aptamer approach:

• RNA sequence space is large

• High affinity aptamer variants are available/can be obtained

• Ease of design/selection/production

www.fda.gov

18

Binding of boxB RNA to lentiviral vectors displaying an λN2-H fusion protein

Bacteriophage

www.fda.gov

19

Binding of boxB RNA to lentiviral vectors displaying an λN2-H fusion protein

A

B

A431 cells

www.fda.gov

20

Transduction of human epidermoid carcinoma A431 cells using lentiviral vector particles displaying an

EGFR-specific RNA aptamer

SSC

EGFP

H‐N + + + +Scaffold + ‐ + +Aptamer + ‐ + +RNase ‐ ‐ + ‐EGF ‐ ‐ ‐ +

2.6% 0.5% 0.5% 0.9%

www.fda.gov

21

Conclusions• Strategy involving measles virus H and F proteins

allowed selective transduction of IL-13R2 positive cells

• Aptamer strategy looks promising but needs optimization

22

Approaches to improve the safety of lentiviral vectors

www.fda.gov

• Reducing the likelihood to form replication-competent lentivirus

• Narrowing the vector’s tissue tropism

• Directing vector integration to genomic “safe harbor sites”

• Modifying the cell substrate for lentiviral vector production

23

Nuclease-mediated integration of integrase-defective lentiviral vectors (IDLVs) at the

AAVS1 “safe harbor” site on chromosome 19

1 2 3

PuromycinSA pA

1 2 3

AAVS1 locus

Puromycin cassette integrated at AAVS1 site

Left arm Right arm IDLV containing agene of interest

Exon 1 Exon 2       3Intron 1

IDLV encoding an engineered nuclease

PuromycinSA pA

IDLV donor vector

24

Double nick strategy involving the AAV2 Rep protein to promote “homologous recombination”

at the AAVS1 locus

1 2 3

Transgene

AAVS1 locus

Left arm Right arm

Exon 1 Exon 2 3

1 2 3Transgene

Rep 78

Nick

Rep 78

Nick

Gonçalves MA et al. Nucleic Acids Res. 40, 3443-3455, 2012

www.fda.gov

25

Rep-mediated integration of IDLVs at the AAVS1 “safe harbor” site

1 2 3

PuromycinSA pA

1 2 3

AAVS1 locus

Puromycin cassette integrated at AAVS1 site

Left arm Right arm IDLV containing apromoterless puromycin cassette

Exon 1 Exon 2       3Intron 1

IDLV encoding Rep 78

p5IEE

PuromycinSA pAp5IEE

IDLV donor vector

www.fda.gov

26

Rep and ZFN-mediated insertion of transgene sequences at the

AAVS1 site mediated by IDLVs

1 2 3PuromycinSA pA

Primers used:

AAVS1-Puro

Puro-Puro

Samples Number of puromycin-resistant clones*

PCR positive clones

Donor 66 ± 12 0% (0/10)

Donor + Rep 275 ± 14 84% (21/25)

Donor + ZFN 200 ± 10 100% (19/19)

p5IEE

*105 cells used for transduction

www.fda.gov

27

Conclusions• The overall efficiencies of the nuclease/nickase

approaches need to be improved

• ZFNs and Rep can be toxic if expressed at high levels

www.fda.gov

28

Approaches to improve the safety of lentiviral vectors

www.fda.gov

• Reducing the likelihood to form replication-competent lentivirus

• Narrowing the vector’s tissue tropism

• Directing vector integration to genomic “safe harbor sites”

• Modifying the cell substrate for lentiviral vector production

29

Design of a HEK 293T cell line bearing a genomic deletion of the SV40 T antigen

coding region

www.fda.gov Heinzel et al. J. Virol. 62, 3738-3746 (1988)

30

PCR screensTotal # of clones screened by PCR 176

# of clones negative both for SV40 T‐ag and Km/Neo resistance gene sequences

55

# of clones negative for Km/Neo sequence

37

# of clones negative PCR result for SV40 T‐ag sequence

3Clone #62,Clone #109, Clone #126

# of wild type clones 81

www.fda.gov

31

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

Exp1 (TU/mL) Exp2 (TU/mL) Exp3 (TU/mL) Exp4 (TU/mL)

Lentiviral vector production using modified HEK 293T cell clones

www.fda.gov

32

Conclusions• Three out of the 176 cell clones screened

revealed deletions of the T antigen sequence

• Vector titers for the three T antigen knock out clones were lower than those obtained using HEK 293T cells but higher than those obtained using HEK 293 cells

www.fda.gov

AcknowledgmentsTakele ArgawMichael MarinoWu OuBrian IaffaldanoAnna KwilasDahae Hailey BaePingjuan LiMichael MorrealeMartin PanigajSeraphin KuateNahid Parvin

Jizhong Zou, NIH/NHLBIBruce A. Shapiro, NIH/NCIKirill Afonin NIH/NCI Thomas Gaj, ScrippsCarlos Barbas, Scripps (1964-2014)

Funding:Medical Countermeasures Initiative (MCMi) GrantModernizing Science (ModSci) GrantOffice of the Chief Scientist (OCS) Challenge Grant

www.fda.gov

34

Questions?

www.fda.gov

top related