scaling anomaly and atomic collapse collective energy …levitov/scaling_anomaly_2013.pdf · 2013....

Post on 15-Mar-2021

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

05/03/2013 Electron Interactions in Graphene

Scaling Anomaly and Atomic Collapse

Collective Energy Propagation at Charge Neutrality

Leonid Levitov (MIT)

Electron Interactions in GrapheneFTPI, University of Minnesota 05/04/2013

05/03/2013 Electron Interactions in Graphene

Scaling symmetry: a primer

For similar shapes areas increase as squares of the corresponding sides

A∼L2Observables:Invariants: angles

05/03/2013 Electron Interactions in Graphene

Scaling symmetry: a primer

Use scaling to prove Pythagorean theorem1. Similar triangles2. Areas add up3. (the corresponding sides)^2 add up

s c2=s a2

+sb2

05/03/2013 Electron Interactions in Graphene

Scaling symmetry: a primer

c2=a2

+b2

05/03/2013 Electron Interactions in Graphene

Dirac-Kepler problem at large Z, atomic collapseW. Greiner, B. Muller & J. Rafelski, QED of Strong Fields (Springer, 1985).I. Pomeranchuk and Y. Smorodinsky, J. Phys. USSR 9, 97 (1945)Y. B. Zeldovich and V. S. Popov, Usp. Fiz. Nauk 105, 403 (1971)V. S. Popov, “Critical Charge in Quantum Electrodynamics,” in: A. B. Migdal memorial volume, Yadernaya Fizika 64, 421 (2001) [Physics of Atomic Nuclei 64, 367 (2001)] Coulomb impurity in grapheneK. Nomura & A. H. MacDonald, PRL 96, 256602 (2006).T. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006).R. R. Biswas, S. Sachdev, and D. T. Son, PRB76, 205122 (2007)D. S. Novikov, PRB 76, 245435 (2007) Atomic collapse in grapheneA. V. Shytov, M. I. Katsnelson, and L. S. Levitov, PRL 99, 236801 (2007)V. M. Pereira, J. Nilsson, and A. H. Castro Neto, PRL 99, 166802 (2007)A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, PRL 99, 246802 (2007)M. M. Fogler, D. S. Novikov, and B. I. Shklovskii, PRB76, 233402 (2007).I. S. Terekhov, A. I. Milstein, V. N. Kotov, O. P. Sushkov, PRL 100, 076803 (2008)V. N. Kotov, B. Uchoa, and A. H. Castro Neto, PRB 78, 035119 (2008). ExperimentY. Wang ... and M. F. Crommie, Nat. Phys. 8, 653 (2012); Science March 2013E. Y. Andrei, this conference

Atomic collapse

05/03/2013 Electron Interactions in Graphene

The Dirac-Kepler problem

r '=a−1r , ∇ '=a∇ , H '=a H

H=−i ℏ v σ⃗ ∇⃗−Ze2

rScaling symmetry

05/03/2013 Electron Interactions in Graphene

The Dirac-Kepler problem

r '=a−1r , ∇ '=a∇ , H '=a H

H=−i ℏ v σ⃗ ∇⃗−Ze2

rScaling symmetry

Invariant: β=Ze2/ℏ v

05/03/2013 Electron Interactions in Graphene

The Dirac-Kepler problem

r '=a−1r , ∇ '=a∇ , H '=a H

H=−i ℏ v σ⃗ ∇⃗−Ze2

rScaling symmetry

Invariant: β=Ze2/ℏ v

Scaling for observables:a) scattering phases energy-independentb) conductivityc)

σ∼EF2∼n

05/03/2013 Electron Interactions in Graphene

The Dirac-Kepler problem

r '=a−1r , ∇ '=a∇ , H '=a H

H=−i ℏ v σ⃗ ∇⃗−Ze2

rScaling symmetry

Invariant: β=Ze2/ℏ v

Scaling for observables:a) scattering phases energy-independentb) conductivityc) no resonances for any , no collapse?

σ∼EF2∼n

05/03/2013 Electron Interactions in Graphene

Anomalies in Quantum PhysicsRegularized quantum theory can violate a theory's classical symmetry

Ubiquitous: chiral A, conformal A, gauge A... Scaling A responsible for the large strength of nuclear interactions and quark confinement (asymptotic freedom)

05/03/2013 Electron Interactions in Graphene

Scaling anomaly:

1. “Global effect” of a short-range cutoff alters the behavior at all energy scales

2. Bound states formation, violation of scaling

3. Essential in theory of quark confinement in QCD developed in 1980's by Gribov(as an alternative to asymptotic freedom)

05/03/2013 Electron Interactions in Graphene

Scaling anomaly:

1. “Global effect” of a short-range cutoff alters the behavior at all energy scales

2. Bound states formation, violation of scaling

3. Essential in theory of quark confinement in QCD developed in 1980's by Gribov(as an alternative to asymptotic freedom)

Novel hep-condmat connection?

05/03/2013 Electron Interactions in Graphene

Scaling Anomaly and Atomic Collapse

YES for ||<Zc – regularization insensitive

NO for ||>Zc – for all energies at once!

Scaling symmetry for charge impurity (regularized Dirac-Kepler problem):

Tunable/switchable anomaly

05/03/2013 Electron Interactions in Graphene

Scattering phases and resonances

Shytov, Katsnelson and LL, PRL 99, 236801 (2007), PRL 99, 246802 (2007)

05/03/2013 Electron Interactions in Graphene

Scattering phases (tuning )

Shytov, Katsnelson and LL, PRL 99, 236801 (2007), PRL 99, 246802 (2007)

05/03/2013 Electron Interactions in Graphene

Caught in the act

05/03/2013 Electron Interactions in Graphene

Observation of Atomic Collapse Resonances (Wang et al Science March 7 2013)

Ca Dimers are Moveable Charge Centers

Fabricate Artificial Nuclei

+ +

++++

+ +

Tune Z above Zc

n=3 dimer cluster

05/03/2013 Electron Interactions in Graphene

Tuning Z by Building Artificial Nuclei from Ca Dimers

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60

1

2

3

Nor

mal

ized

dI/d

V

Sample Bias (eV)

1.9nm 2.7nm 3.6nm 4.5nm 16.9nm

-0.4 -0.2 0.0 0.2 0.4

Sample Bias (eV)

2.4nm 3.3nm 4.2nm 6.0nm 17.1nm

-0.4 -0.2 0.0 0.2 0.4

Sample Bias (eV)

2.6nm 3.4nm 4.3nm 6.0nm 17.1nm

-0.4 -0.2 0.0 0.2 0.4

Sample Bias (eV)

3.2nm 4.1nm 4.9nm 6.7nm 17.6nm

-0.4 -0.2 0.0 0.2 0.4

Sample Bias (eV)

3.7nm 4.6nm 5.5nm 7.3nm 18.9nm

3 nm

Dirac pt.

n=1 n=2 n=3 n=4 n=5

05/03/2013 Electron Interactions in Graphene

Compare to Simulated Behavior

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60

1

2

3

Nor

mal

ized

dI/d

V

Sample Bias (eV)

1.9nm 2.7nm 3.6nm 4.5nm 16.9nm

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Sample Bias (eV)

3.7nm 4.6nm 5.5nm 7.3nm 18.9nm

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60

1

2

3

Nor

mal

ized

dI/d

V

Sample Bias (eV)

1.9nm 2.7nm 3.6nm 4.5nm 16.9nm

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Sample Bias (eV)

2.6nm 3.4nm 4.3nm 6.0nm 17.1nm

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Sample Bias (eV)

3.7nm 4.6nm 5.5nm 7.3nm 18.9nm

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Sample Bias (eV)

2.6nm 3.4nm 4.3nm 6.0nm 17.1nm

Experiment:n=1

Theory:Z/Zc = 0.6

Theory:Z/Zc = 1.4

Theory:Z/Zc = 2.2

Experiment:n=3

Experiment:n=5

Theory fit parameter: Z/Zc

Atomic Collapse

05/03/2013 Electron Interactions in Graphene

What about scaling symmetry?

05/03/2013 Electron Interactions in Graphene

Directly probe scaling symmetry (and its violation)?

H=v σ⃗ (−i ℏ ∇⃗−e A⃗ (r ))−Ze2

r

Adding magnetic field A⃗(r)=B⃗× r⃗ /2

05/03/2013 Electron Interactions in Graphene

Directly probe scaling symmetry (and its violation)?

H=v σ⃗ (−i ℏ ∇⃗−e A⃗ (r ))−Ze2

r

Adding magnetic field A⃗(r)=B⃗× r⃗ /2

sets a length scale and an energy scale:

λB=(ℏ /eB)1 /2 , E (B)=v (ℏ e B)1 /2

05/03/2013 Electron Interactions in Graphene

Directly probe scaling symmetry (and its violation)?

H=v σ⃗ (−i ℏ ∇⃗−e A⃗ (r ))−Ze2

r

Adding magnetic field A⃗(r)=B⃗× r⃗ /2

sets a length scale and an energy scale:

λB=(ℏ /eB)1 /2 , E (B)=v (ℏ e B)1 /2

Prediction: all energies must scale with B as sqrt(B)

05/03/2013 Electron Interactions in Graphene

Directly probe scaling symmetry (and its violation)?

H=v σ⃗ (−i ℏ ∇⃗−e A⃗ (r ))−Ze2

r

Adding magnetic field A⃗(r)=B⃗× r⃗ /2

sets a length scale and an energy scale:

λB=(ℏ /eB)1 /2 , E (B)=v (ℏ e B)1 /2

Prediction: all energies must scale with B as sqrt(B)

True for both el-imp and el-el interactionsmind running coupling!

05/03/2013 Electron Interactions in Graphene

Energy spectrum in a B fieldDirac Landau levels(no charge):

Subcritical charge(DOS near impurity):

all levels show sqrt(B) scaling

05/03/2013 Electron Interactions in Graphene

Infrared spectroscopy of Landau levels: interactions shifting transitions the sqrt(B) scaling unaffected

Jiang et al PRL98 197403 (2007)

05/03/2013 Electron Interactions in Graphene

Scaling anomaly

Subcritical charge: Supercritical charge:

Scaling upheld Scaling violated

05/03/2013 Electron Interactions in Graphene

B-field as an experimental knob

1) Scaling symmetry for massless Dirac fermions with 1/r interactions (both el-imp and el-el)

2) Scaling anomaly: scaling violated for supercritical Coulomb potential

3) sqrt(B) scaling breakdown as anomaly litmus test

4) Other knobs (calibration?): pseudo-B field, strain, curvature, gating

05/03/2013 Electron Interactions in Graphene

This page intentionally left blank

05/03/2013 Electron Interactions in Graphene

Collective Energy Propagation at Charge Neutrality

ArXiv:1306.4972 TV Phan, JCW Song & LL

05/03/2013 Electron Interactions in Graphene

How fast can heat propagate?

Typically, heat propagates through diffusion:

∂tW=κ∇2T , L∼√Dt

05/03/2013 Electron Interactions in Graphene

How fast can heat propagate?

Typically, heat propagates through diffusion:

∂tW=κ∇2T , L∼√Dt

In special cases, a compressional wave (second sound)

reaching speeds as high as 20 m/s (superfluid liquid, He II), 780 m/s (solid, Bi)

(∂t2−v2

∇2)T=0

05/03/2013 Electron Interactions in Graphene

How fast can heat propagate?

Typically, heat propagates through diffusion:

∂tW=κ∇2T , L∼√Dt

In special cases, a compressional wave (second sound)

reaching speeds as high as 20 m/s (superfluid liquid, He II), 780 m/s (solid, Bi)

(∂t2−v2

∇2)T=0Is this fast enough?

05/03/2013 Electron Interactions in Graphene

Cosmic soundFluid mechanics predicts isentropic waves in a relativistic gas propagating with the velocity

c '=c /√3In the early universe “baryon acoustic oscillations” arise due to gravity and radiation pressure. Key in interpreting Cosmic Microwave Background

05/03/2013 Electron Interactions in Graphene

Energy waves

Relativistic hydrodynamics: energy-momentum conservation (4x4 stress tensor)

∂iT ij=0, T=(E j⃗j⃗ P) , P=

13

Eδij

j⃗=c2 p⃗

3×3

Energy flux and momentum density related by

giving(∂t

2−

13c2∇

2)E=0

05/03/2013 Electron Interactions in Graphene

Energy waves

Relativistic hydrodynamics: energy-momentum conservation (4x4 stress tensor)

∂iT ij=0, T=(E j⃗j⃗ P) , P=

13

Eδij

j⃗=c2 p⃗

3×3

Energy flux and momentum density related by

(∂t2−

13c2∇

2)E=0

Cosmic sound in graphene?

giving

03/18/13

Hydrodynamics at CN

Strongly interacting charge-compensated plasma (Gonzales, Guinea, Vozmediano, Son, Sheehy & Schmalian, Vafek)

E & P conserved in carrier-carrier collisions

Rapid exchange of E and P among colliding particles

Relatively slow P relaxation, very slow E relaxation

“Inertial mass”: E-flux proportional to P-density

03/18/13

Hydrodynamics at CN

Strongly interacting charge-compensated plasma (Gonzales, Guinea, Vozmediano, Son, Sheehy & Schmalian, Vafek)

E & P conserved in carrier-carrier collisions

Rapid exchange of E and P among colliding particles

Relatively slow P relaxation, very slow E relaxation

“Inertial mass”: E-flux proportional to P-density j⃗w=v2 p⃗

∂tW+∇⃗ j⃗W=0, ∂t p i+∇ iσij=0, σij=12W δij

03/18/13

Hydrodynamics at CN

Strongly interacting charge-compensated plasma (Gonzales, Guinea, Vozmediano, Son, Sheehy & Schmalian, Vafek)

E & P conserved in carrier-carrier collisions

Rapid exchange of E and P among colliding particles

Relatively slow P relaxation, very slow E relaxation

“Inertial mass”: E-flux proportional to P-density j⃗w=v2 p⃗

∂tW+∇⃗ j⃗W=0, ∂t p i+∇ iσij=0, σij=12W δij

(∂t2−

12v2∇ 2)W=0, v '=

v

√2≈0.71⋅106 m / s

03/18/13

Hydrodynamics at CN

Strongly interacting charge-compensated plasma (Gonzales, Guinea, Vozmediano, Son, Sheehy & Schmalian, Vafek)

E & P conserved in carrier-carrier collisions

Rapid exchange of E and P among colliding particles

Relatively slow P relaxation, very slow E relaxation

“Inertial mass”: E-flux proportional to P-density j⃗w=v2 p⃗

∂tW+∇⃗ j⃗W=0, ∂t p i+∇ iσij=0, σij=12W δij

(∂t2−

12v2∇ 2)W=0, v '=

v

√2≈0.71⋅106 m / s

Electronic thermal waves x1000 faster than phonon 2nd sound, however x250

slower than cosmic sound

03/18/13

Compare to plasmons

∂tρ+∇⃗ j⃗=0, j⃗=em̃

n0 p⃗

∂t p⃗=ρ E⃗ , E⃗=−∇⃗r∫V (r−r ' )ρ(r ')d3 r '

1. propagating charge density wave2. requires finite doping3. frequencies EF

4. damping: momentum relaxation

ω(ω+i γp)=2e2 EF

ϵ̃ ℏ2 k

03/18/13

Compare to plasmons

∂tρ+∇⃗ j⃗=0, j⃗=em̃

n0 p⃗

∂t p⃗=ρ E⃗ , E⃗=−∇⃗r∫V (r−r ' )ρ(r ')d3 r '

1. propagating charge density wave2. requires finite doping3. frequencies EF

4. damping: momentum relaxation

ω(ω+i γp)=2e2 EF

ϵ̃ ℏ2 k

03/18/13

Compare to plasmons

∂tρ+∇⃗ j⃗=0, j⃗=em̃

n0 p⃗

∂t p⃗=ρ E⃗ , E⃗=−∇⃗r∫V (r−r ' )ρ(r ')d3 r '

1. propagating charge density wave2. requires finite doping3. frequencies EF

4. damping: momentum relaxation

temperaturezero

^k also Umklapp scattering and viscosity (small)

ω(ω+i γp)=2e2 EF

ϵ̃ ℏ2 k (ω+ iDk2

)(ω+i γp+ i νk 2)=

v2

2k

(∂t−D∇2)W +v 2

∇⃗ p⃗=0, D=κ/C

(∂t−ν∇2+γp) p⃗+

12∇W=0

03/18/13

Validity and frequency range

τϵ≈ℏ

α2 kT

For T=100K find

carrier-carrier scattering timeKashuba (2008), Fritz et al (2008)

τϵ≈60 fs

03/18/13

Validity and frequency range

(ω+ iDk2)(ω+i γp+ i νk 2

)=v2

2k2

τϵ≈ℏ

α2 kT

For T=100K find

carrier-carrier scattering timeKashuba (2008), Fritz et al (2008)

τϵ≈60 fsHydrodynamics valid for ω≪1/ τϵ

03/18/13

Validity and frequency range

(ω+ iDk2)(ω+i γp+ i νk 2

)=v2

2k2

τϵ≈ℏ

α2 kT

For T=100K find

carrier-carrier scattering timeKashuba (2008), Fritz et al (2008)

τϵ≈60 fsHydrodynamics valid for ω≪1/ τϵ

Weak damping, ''', for γp≪ω≪τϵ−1

Few-m mean free paths (high doping, clean G/BN systems)

sqrt(n) dependence extrapolated to DP yields γp−1≈0.5 ps

0.2THz< f <3THz 0.3μm<λ<5μm

03/18/13

How to observe?Nature Nano 2008

03/18/13

How to observe?Nature Nano 2008

Measured velocity distinct from plasmon velocity!Perhaps coincidentally, this equals

≈106 m / sv '=

v

√d, d=1

03/18/13

How to observe?

J Chen … F H L Koppens, Nature (2012)Visualize localized plasmon modes in real space by scattering-type scanning near-field optical microscopy

03/18/13

Summary

1) Wavelike (ballistic) heat propagation at CN

2) Charge-neutral mode, characteristic velocity

3) Exist only at CN (switchable/tunable)

4) frequency range

0.2THz< f <3THz 300nm<λ<5μm

v '=v /√2

05/03/2013 Electron Interactions in Graphene

Textbook: sound is the form of energy that travels in waves

top related