sec. 6.6: inverse trigonometric...

Post on 05-Sep-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Sec. 6.6: Inverse Trigonometric Functions

In this section, we will

I revisit definitions of trig functions - both right triangle andunit circle definitions

I define inverse trig functions and their domains and ranges

I revisit the cancellation laws given a function and its inversefunction

I find the derivatives of the inverse trig functions

I look at integral formulas of certain functions whose integralsare inverse trig functions

Definition of trig functions and the ratios of the sides

YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen

Unit circle definition

x = cos θ, y = sin θ

Example 1) Identify the corresponding (x , y) on the U.C. if θ = π6

Example 2) Find (x , y) if θ = 11π6

YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Highlight
YK
Highlight
YK
Highlight
YK
Highlight

Graph of the Sine function

Here’s the graph of the sine function.

Since the function is not 1-1, we need to restrict its domain todefine its inverse function. One way it can be done is by restringthe domain to [−π/2, π/2]. That is, let

D(sin x) = [−π/2, π/2]

YK
Pen
YK
Pen
YK
Pen

The graph of the inverse sine function

Here’s the graph of the sine function whose domain restricted to[−π/2, π/2].

For the above function, state its domain and range.

Recall that for the inverse function, we flip everything about y = x .

YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen

The graph of the inverse sine function (Continued)

What are the domain and the range of the inverse sine function?

YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen

Graph of the Cosine function

Here’s the graph of the cosine function.

To define its inverse function, we will need to restrict its domain,so that the cosine function becomes 1-1. One way it can be doneis by restring the domain to [0, π]. So, let

D(cos x) = [0, π].

YK
Pen
YK
Pen
YK
Pen

The graph of the inverse cosine functionHere’s the graph of the cosine function with its domain restrictedto [0, π].

For the above function, what is its domain and range?

Recall that for the inverse function, we flip everything about y = x .

YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen

The graph of the inverse cosine function (Continued)

What are the domain and the range of the inverse cosine function?

YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen

Cancellation equationsGiven f (x) with its domain D(f (x)), if g(x) = f −1(x), then

I f −1(f (x)) = x for x ∈ D(f )I f (f −1(x)) = x for x ∈ D(f −1)

Examples) Recall that

1. e(ln x) = x for x ∈ D(ln x)

2. ln(ex) = x for x ∈ D(ex)

3. a( ) = x for x ∈

4. loga( ) = x for x ∈

YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen

Cancellation equations for the inverse sine function

Theorem

1. sin−1(sin x) = x , −π2 ≤ x ≤ π

2

2. sin(sin−1 x) = x , −1 ≤ x ≤ 1

Example) Evaluate 1) sin−1(1/2), 2) tan(arcsin 13), 3) sin−1(2).

YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen

Cancellation equations for the inverse cosine function

Theorem

1. cos−1(cos x) = x , 0 ≤ x ≤ π2. cos(cos−1 x) = x , −1 ≤ x ≤ 1

Example) Evaluate 1) cos−1(1/2), 2) tan(arccos 14), 3)

cos−1(−2).

YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen

Graph of the tangent function

YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen

Graph of the inverse tangent function

1. What are the domain and the range of the inverse tangentfunction?

2. limx→∞ tan−1(x) =3. limx→−∞ tan−1(x) =

YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen

Derivatives of the inverse trig functions : arcsine

Theorem

d

dxsin−1(x) =

1√1− x2

, −1 < x < 1

Example) Given f (x) = sin−1(2x), find

1. Domain of f2. f

′(x)

3. Domain of f′

YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Rectangle
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen

Derivatives of the inverse trig functions: arccosine

Theorem

d

dxcos−1(x) = − 1√

1− x2, −1 < x < 1

Example) Given f (x) = cos−1(x2 − 1), find

1. Domain of f2. f

′(x)

3. Domain of f′

YK
Rectangle
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen

Derivatives of the inverse trig functions: arctangent

Theorem

d

dxtan−1(x) =

1

1 + x2, −∞ < x <∞

Example) Given f (x) = tan−1(3x), find

1. Domain of f2. f

′(x)

3. Domain of f′

YK
Rectangle
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen

Integral formulas

Theorem

1.∫

1√1−x2 dx = sin−1 x + C

2.∫− 1√

1−x2 dx = cos−1 x + C

3.∫

11+x2

dx = tan−1 x + C

Examples) Evaluate

1.∫ 1/20

1√1−x2 dx

2.∫ 1/40

1√1−4x2 dx

3.∫ 10

41+x2

dx

YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Highlight
YK
Highlight
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen

Examples1. Verify that ∫

1

a2 + x2dx =

1

atan−1(

x

a) + C

2. Find∫

19+x2

dx

3. Find∫ 30

19+x2

dx

4. Find∫

x9+x4

dx

YK
Rectangle
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen
YK
Pen

top related